L(s) = 1 | + (−1.5 + 0.866i)3-s + (1.5 + 2.59i)5-s + (2 + 1.73i)7-s + (1.5 − 2.59i)9-s + (−4.5 − 2.59i)11-s + (−4.5 − 2.59i)15-s + (1.5 − 2.59i)17-s + (1.5 − 0.866i)19-s + (−4.5 − 0.866i)21-s + (4.5 − 2.59i)23-s + (−2 + 3.46i)25-s + 5.19i·27-s + (−1.5 − 0.866i)31-s + 9·33-s + (−1.5 + 7.79i)35-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.499i)3-s + (0.670 + 1.16i)5-s + (0.755 + 0.654i)7-s + (0.5 − 0.866i)9-s + (−1.35 − 0.783i)11-s + (−1.16 − 0.670i)15-s + (0.363 − 0.630i)17-s + (0.344 − 0.198i)19-s + (−0.981 − 0.188i)21-s + (0.938 − 0.541i)23-s + (−0.400 + 0.692i)25-s + 0.999i·27-s + (−0.269 − 0.155i)31-s + 1.56·33-s + (−0.253 + 1.31i)35-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.553−0.832i)Λ(2−s)
Λ(s)=(=(84s/2ΓC(s+1/2)L(s)(0.553−0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.553−0.832i
|
Analytic conductor: |
0.670743 |
Root analytic conductor: |
0.818989 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :1/2), 0.553−0.832i)
|
Particular Values
L(1) |
≈ |
0.748335+0.400992i |
L(21) |
≈ |
0.748335+0.400992i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.5−0.866i)T |
| 7 | 1+(−2−1.73i)T |
good | 5 | 1+(−1.5−2.59i)T+(−2.5+4.33i)T2 |
| 11 | 1+(4.5+2.59i)T+(5.5+9.52i)T2 |
| 13 | 1−13T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.5+0.866i)T+(9.5−16.4i)T2 |
| 23 | 1+(−4.5+2.59i)T+(11.5−19.9i)T2 |
| 29 | 1−29T2 |
| 31 | 1+(1.5+0.866i)T+(15.5+26.8i)T2 |
| 37 | 1+(3.5+6.06i)T+(−18.5+32.0i)T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+(−1.5−2.59i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−4.5−2.59i)T+(26.5+45.8i)T2 |
| 59 | 1+(1.5−2.59i)T+(−29.5−51.0i)T2 |
| 61 | 1+(10.5−6.06i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.5−4.33i)T+(−33.5−58.0i)T2 |
| 71 | 1+10.3iT−71T2 |
| 73 | 1+(10.5+6.06i)T+(36.5+63.2i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1−12T+83T2 |
| 89 | 1+(4.5+7.79i)T+(−44.5+77.0i)T2 |
| 97 | 1−6.92iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.59174071179486161604584992940, −13.47331276317274255234512181947, −12.05639591848514170888361517975, −10.92505200911177285641596375675, −10.47296983286332629393831550726, −9.075181555363793739476404870973, −7.39495330944302374714503174829, −5.97543486726493630289169416536, −5.09949887049444236650262658522, −2.85316685493529774338497922753,
1.54619984643980010301992483740, 4.79948549506521339838917428403, 5.48565986050273276885501079767, 7.22703844650902517333582839116, 8.277117826161875237870392633277, 9.918395853026315812525942744810, 10.83467187824897371894014100415, 12.16075189994791473413079363820, 13.01658424383537857920447951262, 13.69169966142622659909948882410