L(s) = 1 | + (−1.28 + 0.599i)2-s + 3-s + (1.28 − 1.53i)4-s − 3.33i·5-s + (−1.28 + 0.599i)6-s + (1.56 + 2.13i)7-s + (−0.719 + 2.73i)8-s + 9-s + (2 + 4.27i)10-s + 0.936i·11-s + (1.28 − 1.53i)12-s − 1.87i·13-s + (−3.28 − 1.79i)14-s − 3.33i·15-s + (−0.719 − 3.93i)16-s + 5.20i·17-s + ⋯ |
L(s) = 1 | + (−0.905 + 0.424i)2-s + 0.577·3-s + (0.640 − 0.768i)4-s − 1.49i·5-s + (−0.522 + 0.244i)6-s + (0.590 + 0.807i)7-s + (−0.254 + 0.967i)8-s + 0.333·9-s + (0.632 + 1.35i)10-s + 0.282i·11-s + (0.369 − 0.443i)12-s − 0.519i·13-s + (−0.876 − 0.480i)14-s − 0.861i·15-s + (−0.179 − 0.983i)16-s + 1.26i·17-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.997+0.0636i)Λ(2−s)
Λ(s)=(=(84s/2ΓC(s+1/2)L(s)(0.997+0.0636i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.997+0.0636i
|
Analytic conductor: |
0.670743 |
Root analytic conductor: |
0.818989 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :1/2), 0.997+0.0636i)
|
Particular Values
L(1) |
≈ |
0.802807−0.0255711i |
L(21) |
≈ |
0.802807−0.0255711i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.28−0.599i)T |
| 3 | 1−T |
| 7 | 1+(−1.56−2.13i)T |
good | 5 | 1+3.33iT−5T2 |
| 11 | 1−0.936iT−11T2 |
| 13 | 1+1.87iT−13T2 |
| 17 | 1−5.20iT−17T2 |
| 19 | 1+7.12T+19T2 |
| 23 | 1+0.936iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−1.12T+37T2 |
| 41 | 1−1.46iT−41T2 |
| 43 | 1−9.06iT−43T2 |
| 47 | 1+6.24T+47T2 |
| 53 | 1−12.2T+53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1+4.79iT−61T2 |
| 67 | 1+10.9iT−67T2 |
| 71 | 1+3.86iT−71T2 |
| 73 | 1+6.67iT−73T2 |
| 79 | 1+2.39iT−79T2 |
| 83 | 1−10.2T+83T2 |
| 89 | 1+1.46iT−89T2 |
| 97 | 1−10.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.76819994238536580665720511066, −13.07056018224511956699937647030, −12.22863885781769276542438268423, −10.75320245503232241960206349880, −9.417286413170718152697370458412, −8.510815628725766047549570632269, −8.036450704565657382217270384451, −6.08336522055488476693531156665, −4.73027934549930739366738681298, −1.85079309095007750368930363162,
2.38992235256116385514090455262, 3.85746371001894976005028043319, 6.74425116675161729432485668747, 7.45663452075054569364412035995, 8.718749724391334480388567760508, 10.06560209788034286652920546956, 10.84036931716501584657900716808, 11.67699098899141575774887647947, 13.36373791091753852187686087932, 14.34846655778372350742695271801