L(s) = 1 | + (−1.28 + 0.599i)2-s + 3-s + (1.28 − 1.53i)4-s − 3.33i·5-s + (−1.28 + 0.599i)6-s + (1.56 + 2.13i)7-s + (−0.719 + 2.73i)8-s + 9-s + (2 + 4.27i)10-s + 0.936i·11-s + (1.28 − 1.53i)12-s − 1.87i·13-s + (−3.28 − 1.79i)14-s − 3.33i·15-s + (−0.719 − 3.93i)16-s + 5.20i·17-s + ⋯ |
L(s) = 1 | + (−0.905 + 0.424i)2-s + 0.577·3-s + (0.640 − 0.768i)4-s − 1.49i·5-s + (−0.522 + 0.244i)6-s + (0.590 + 0.807i)7-s + (−0.254 + 0.967i)8-s + 0.333·9-s + (0.632 + 1.35i)10-s + 0.282i·11-s + (0.369 − 0.443i)12-s − 0.519i·13-s + (−0.876 − 0.480i)14-s − 0.861i·15-s + (−0.179 − 0.983i)16-s + 1.26i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0636i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0636i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.802807 - 0.0255711i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.802807 - 0.0255711i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.28 - 0.599i)T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 + (-1.56 - 2.13i)T \) |
good | 5 | \( 1 + 3.33iT - 5T^{2} \) |
| 11 | \( 1 - 0.936iT - 11T^{2} \) |
| 13 | \( 1 + 1.87iT - 13T^{2} \) |
| 17 | \( 1 - 5.20iT - 17T^{2} \) |
| 19 | \( 1 + 7.12T + 19T^{2} \) |
| 23 | \( 1 + 0.936iT - 23T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 1.12T + 37T^{2} \) |
| 41 | \( 1 - 1.46iT - 41T^{2} \) |
| 43 | \( 1 - 9.06iT - 43T^{2} \) |
| 47 | \( 1 + 6.24T + 47T^{2} \) |
| 53 | \( 1 - 12.2T + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 4.79iT - 61T^{2} \) |
| 67 | \( 1 + 10.9iT - 67T^{2} \) |
| 71 | \( 1 + 3.86iT - 71T^{2} \) |
| 73 | \( 1 + 6.67iT - 73T^{2} \) |
| 79 | \( 1 + 2.39iT - 79T^{2} \) |
| 83 | \( 1 - 10.2T + 83T^{2} \) |
| 89 | \( 1 + 1.46iT - 89T^{2} \) |
| 97 | \( 1 - 10.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.76819994238536580665720511066, −13.07056018224511956699937647030, −12.22863885781769276542438268423, −10.75320245503232241960206349880, −9.417286413170718152697370458412, −8.510815628725766047549570632269, −8.036450704565657382217270384451, −6.08336522055488476693531156665, −4.73027934549930739366738681298, −1.85079309095007750368930363162,
2.38992235256116385514090455262, 3.85746371001894976005028043319, 6.74425116675161729432485668747, 7.45663452075054569364412035995, 8.718749724391334480388567760508, 10.06560209788034286652920546956, 10.84036931716501584657900716808, 11.67699098899141575774887647947, 13.36373791091753852187686087932, 14.34846655778372350742695271801