L(s) = 1 | + 0.445·2-s − 3.24·3-s − 1.80·4-s − 5-s − 1.44·6-s + 3.24·7-s − 1.69·8-s + 7.54·9-s − 0.445·10-s − 0.692·11-s + 5.85·12-s + 1.44·14-s + 3.24·15-s + 2.85·16-s + 3.74·17-s + 3.35·18-s − 1.53·19-s + 1.80·20-s − 10.5·21-s − 0.307·22-s − 1.22·23-s + 5.49·24-s + 25-s − 14.7·27-s − 5.85·28-s − 6.07·29-s + 1.44·30-s + ⋯ |
L(s) = 1 | + 0.314·2-s − 1.87·3-s − 0.900·4-s − 0.447·5-s − 0.589·6-s + 1.22·7-s − 0.598·8-s + 2.51·9-s − 0.140·10-s − 0.208·11-s + 1.68·12-s + 0.386·14-s + 0.838·15-s + 0.712·16-s + 0.907·17-s + 0.791·18-s − 0.351·19-s + 0.402·20-s − 2.30·21-s − 0.0656·22-s − 0.255·23-s + 1.12·24-s + 0.200·25-s − 2.83·27-s − 1.10·28-s − 1.12·29-s + 0.263·30-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+T |
| 13 | 1 |
good | 2 | 1−0.445T+2T2 |
| 3 | 1+3.24T+3T2 |
| 7 | 1−3.24T+7T2 |
| 11 | 1+0.692T+11T2 |
| 17 | 1−3.74T+17T2 |
| 19 | 1+1.53T+19T2 |
| 23 | 1+1.22T+23T2 |
| 29 | 1+6.07T+29T2 |
| 31 | 1+8.45T+31T2 |
| 37 | 1+1.89T+37T2 |
| 41 | 1+0.457T+41T2 |
| 43 | 1+6.19T+43T2 |
| 47 | 1−11.5T+47T2 |
| 53 | 1−0.801T+53T2 |
| 59 | 1−6.60T+59T2 |
| 61 | 1+4.19T+61T2 |
| 67 | 1+13.8T+67T2 |
| 71 | 1+9.87T+71T2 |
| 73 | 1−8.05T+73T2 |
| 79 | 1+16.5T+79T2 |
| 83 | 1−6.17T+83T2 |
| 89 | 1+10.5T+89T2 |
| 97 | 1+3.45T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08260074819754363975525712483, −8.980806120475066550950734163951, −7.87742937547111830405240015715, −7.15987609639137326358242594432, −5.78516715931268228571650472370, −5.38732873807321509278610472570, −4.57390845294357769008725299808, −3.82014254941757263839934566899, −1.43288330913151538286107058378, 0,
1.43288330913151538286107058378, 3.82014254941757263839934566899, 4.57390845294357769008725299808, 5.38732873807321509278610472570, 5.78516715931268228571650472370, 7.15987609639137326358242594432, 7.87742937547111830405240015715, 8.980806120475066550950734163951, 10.08260074819754363975525712483