L(s) = 1 | + 2.30·2-s + 3-s + 3.30·4-s + 5-s + 2.30·6-s + 7-s + 3.00·8-s − 2·9-s + 2.30·10-s − 1.60·11-s + 3.30·12-s + 2.30·14-s + 15-s + 0.302·16-s + 7.60·17-s − 4.60·18-s + 5.60·19-s + 3.30·20-s + 21-s − 3.69·22-s − 3·23-s + 3.00·24-s + 25-s − 5·27-s + 3.30·28-s − 6.21·29-s + 2.30·30-s + ⋯ |
L(s) = 1 | + 1.62·2-s + 0.577·3-s + 1.65·4-s + 0.447·5-s + 0.940·6-s + 0.377·7-s + 1.06·8-s − 0.666·9-s + 0.728·10-s − 0.484·11-s + 0.953·12-s + 0.615·14-s + 0.258·15-s + 0.0756·16-s + 1.84·17-s − 1.08·18-s + 1.28·19-s + 0.738·20-s + 0.218·21-s − 0.788·22-s − 0.625·23-s + 0.612·24-s + 0.200·25-s − 0.962·27-s + 0.624·28-s − 1.15·29-s + 0.420·30-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.741236432 |
L(21) |
≈ |
4.741236432 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 13 | 1 |
good | 2 | 1−2.30T+2T2 |
| 3 | 1−T+3T2 |
| 7 | 1−T+7T2 |
| 11 | 1+1.60T+11T2 |
| 17 | 1−7.60T+17T2 |
| 19 | 1−5.60T+19T2 |
| 23 | 1+3T+23T2 |
| 29 | 1+6.21T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+3.60T+37T2 |
| 41 | 1+3T+41T2 |
| 43 | 1+10.2T+43T2 |
| 47 | 1+9.21T+47T2 |
| 53 | 1+3.21T+53T2 |
| 59 | 1−10.8T+59T2 |
| 61 | 1+T+61T2 |
| 67 | 1−7T+67T2 |
| 71 | 1+4.81T+71T2 |
| 73 | 1−0.788T+73T2 |
| 79 | 1−5.21T+79T2 |
| 83 | 1−9.21T+83T2 |
| 89 | 1−6.21T+89T2 |
| 97 | 1−8.39T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23948127815180831698568867260, −9.491597028274481016595490014246, −8.249182346494674831196633259830, −7.58170703178011570551686526041, −6.39699950830088178096986400096, −5.41123508753474257536257669286, −5.11624718349095016440146693414, −3.56770180873369175370136759490, −3.08475022846135840260877917843, −1.86263334625763701777694191280,
1.86263334625763701777694191280, 3.08475022846135840260877917843, 3.56770180873369175370136759490, 5.11624718349095016440146693414, 5.41123508753474257536257669286, 6.39699950830088178096986400096, 7.58170703178011570551686526041, 8.249182346494674831196633259830, 9.491597028274481016595490014246, 10.23948127815180831698568867260