L(s) = 1 | + 1.58i·2-s + (−0.139 + 0.139i)3-s − 0.511·4-s + (−2.23 + 0.0672i)5-s + (−0.221 − 0.221i)6-s − 0.548·7-s + 2.35i·8-s + 2.96i·9-s + (−0.106 − 3.54i)10-s + (−0.108 + 0.108i)11-s + (0.0713 − 0.0713i)12-s − 0.868i·14-s + (0.302 − 0.321i)15-s − 4.76·16-s + (2.22 − 2.22i)17-s − 4.69·18-s + ⋯ |
L(s) = 1 | + 1.12i·2-s + (−0.0805 + 0.0805i)3-s − 0.255·4-s + (−0.999 + 0.0300i)5-s + (−0.0902 − 0.0902i)6-s − 0.207·7-s + 0.834i·8-s + 0.987i·9-s + (−0.0337 − 1.12i)10-s + (−0.0326 + 0.0326i)11-s + (0.0205 − 0.0205i)12-s − 0.232i·14-s + (0.0780 − 0.0829i)15-s − 1.19·16-s + (0.539 − 0.539i)17-s − 1.10·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.638 + 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.638 + 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.258375 - 0.550492i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.258375 - 0.550492i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.23 - 0.0672i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 1.58iT - 2T^{2} \) |
| 3 | \( 1 + (0.139 - 0.139i)T - 3iT^{2} \) |
| 7 | \( 1 + 0.548T + 7T^{2} \) |
| 11 | \( 1 + (0.108 - 0.108i)T - 11iT^{2} \) |
| 17 | \( 1 + (-2.22 + 2.22i)T - 17iT^{2} \) |
| 19 | \( 1 + (3.22 - 3.22i)T - 19iT^{2} \) |
| 23 | \( 1 + (2.50 + 2.50i)T + 23iT^{2} \) |
| 29 | \( 1 - 2.34iT - 29T^{2} \) |
| 31 | \( 1 + (6.60 + 6.60i)T + 31iT^{2} \) |
| 37 | \( 1 + 6.80T + 37T^{2} \) |
| 41 | \( 1 + (-2.53 - 2.53i)T + 41iT^{2} \) |
| 43 | \( 1 + (5.02 + 5.02i)T + 43iT^{2} \) |
| 47 | \( 1 + 9.13T + 47T^{2} \) |
| 53 | \( 1 + (3.70 - 3.70i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.69 - 2.69i)T + 59iT^{2} \) |
| 61 | \( 1 - 7.84T + 61T^{2} \) |
| 67 | \( 1 - 4.89iT - 67T^{2} \) |
| 71 | \( 1 + (-11.0 - 11.0i)T + 71iT^{2} \) |
| 73 | \( 1 + 3.91iT - 73T^{2} \) |
| 79 | \( 1 - 11.1iT - 79T^{2} \) |
| 83 | \( 1 - 13.4T + 83T^{2} \) |
| 89 | \( 1 + (-6.43 - 6.43i)T + 89iT^{2} \) |
| 97 | \( 1 + 7.57iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82799506168554732527381515586, −9.852027598829205780719231582183, −8.562644107768739774515673174767, −8.047759483821567392365443218194, −7.36266807977105522439502174332, −6.57956571689878017282733165414, −5.52699459590328034461269974809, −4.75848074565500040057226147084, −3.62104387301692896998334853136, −2.18523734740445213715844425393,
0.28607700011836006863388936583, 1.73908522101519657724997704677, 3.32107051303554426607471307149, 3.64698611538687796641773578112, 4.86726397109504855834782859789, 6.35498362077324199165232437139, 6.98949670456398765665117019247, 8.073926548400572392854488028879, 9.022384412816950880108084249566, 9.813531517488949833773241159383