L(s) = 1 | + (−2.29 − 1.32i)2-s + (−1.25 + 0.335i)3-s + (2.51 + 4.34i)4-s + (−1.81 − 1.30i)5-s + (3.31 + 0.889i)6-s + (−0.0561 − 0.0972i)7-s − 8.00i·8-s + (−1.14 + 0.658i)9-s + (2.44 + 5.39i)10-s + (1.78 − 0.479i)11-s + (−4.60 − 4.60i)12-s + 0.297i·14-s + (2.71 + 1.02i)15-s + (−5.58 + 9.67i)16-s + (0.706 − 2.63i)17-s + 3.49·18-s + ⋯ |
L(s) = 1 | + (−1.62 − 0.936i)2-s + (−0.723 + 0.193i)3-s + (1.25 + 2.17i)4-s + (−0.812 − 0.583i)5-s + (1.35 + 0.363i)6-s + (−0.0212 − 0.0367i)7-s − 2.83i·8-s + (−0.380 + 0.219i)9-s + (0.771 + 1.70i)10-s + (0.539 − 0.144i)11-s + (−1.32 − 1.32i)12-s + 0.0795i·14-s + (0.700 + 0.264i)15-s + (−1.39 + 2.41i)16-s + (0.171 − 0.639i)17-s + 0.823·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 + 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.803 + 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0743354 - 0.225419i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0743354 - 0.225419i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.81 + 1.30i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (2.29 + 1.32i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.25 - 0.335i)T + (2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (0.0561 + 0.0972i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.78 + 0.479i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.706 + 2.63i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.80 - 6.72i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.831 - 3.10i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-4.03 - 2.32i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.624 + 0.624i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.737 + 1.27i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.40 + 5.24i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (3.76 + 1.00i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 0.345T + 47T^{2} \) |
| 53 | \( 1 + (3.59 + 3.59i)T + 53iT^{2} \) |
| 59 | \( 1 + (-1.24 - 0.332i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.39 - 2.41i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.124 - 0.0721i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.28 + 1.41i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 9.06iT - 73T^{2} \) |
| 79 | \( 1 + 15.1iT - 79T^{2} \) |
| 83 | \( 1 + 8.53T + 83T^{2} \) |
| 89 | \( 1 + (-0.147 - 0.549i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (12.9 - 7.48i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.969190197398864705494306802198, −9.030776627345528831745450274921, −8.381809411198200370748457167914, −7.70856205524369122945371390272, −6.73281974203889649946178523494, −5.43661717999672247662189267321, −4.10181469932528343446052332121, −3.12172882051357462708294590942, −1.57582273888687760049923518933, −0.29623316250245102333529795452,
0.951536001703881398986142017293, 2.73784738597263207353321521792, 4.54144968521801097750621925681, 5.81199198462306149406434553741, 6.68930639299355697665711437712, 6.90631009232848781580808091516, 8.107653756811752401095042200683, 8.626201387702127005217789949517, 9.544737143642516666363667291324, 10.49260401769523422336242428273