L(s) = 1 | + (1.30 + 0.951i)2-s + (0.500 + 1.53i)4-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + (−0.499 + 1.53i)14-s + (−0.5 − 1.53i)18-s − 1.61·23-s + (0.309 − 0.951i)25-s + (−1.30 + 0.951i)28-s + (0.190 + 0.587i)29-s + 0.999·32-s + (0.499 − 1.53i)36-s + (−0.5 − 1.53i)37-s + 0.618·43-s + ⋯ |
L(s) = 1 | + (1.30 + 0.951i)2-s + (0.500 + 1.53i)4-s + (0.309 + 0.951i)7-s + (−0.309 + 0.951i)8-s + (−0.809 − 0.587i)9-s + (−0.499 + 1.53i)14-s + (−0.5 − 1.53i)18-s − 1.61·23-s + (0.309 − 0.951i)25-s + (−1.30 + 0.951i)28-s + (0.190 + 0.587i)29-s + 0.999·32-s + (0.499 − 1.53i)36-s + (−0.5 − 1.53i)37-s + 0.618·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0694 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0694 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.857355591\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.857355591\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 3 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + 1.61T + T^{2} \) |
| 29 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - 0.618T + T^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80328931807353023724585656024, −9.577623060045082676609661936922, −8.607019613574213935048365323715, −7.950500234343849208336061157512, −6.84300404044628132804466699745, −5.98575299678563106505725137823, −5.54451540347844783517538984300, −4.49493466612197636975203312587, −3.50610390342706678757228314155, −2.40396896627239681441679428807,
1.64318609130184251032681965757, 2.81799586484449248407738289829, 3.81371964758773118665333724851, 4.64536468671673748583616658284, 5.47775432361047704952402501558, 6.39076992498300905837987920073, 7.64965076088538736801926289493, 8.414347416921750139149260219695, 9.812177555937591283798709291387, 10.50873127037413216336573654280