L(s) = 1 | + (−1.56 − 0.882i)2-s + (1.14 + 1.90i)4-s + (0.897 + 0.441i)7-s + (−0.0625 − 2.19i)8-s + (−0.809 + 0.587i)9-s + (0.198 − 0.980i)11-s + (−1.01 − 1.48i)14-s + (−0.799 + 1.51i)16-s + (1.78 − 0.204i)18-s + (−1.17 + 1.35i)22-s + (0.280 + 1.95i)23-s + (0.774 + 0.633i)25-s + (0.190 + 2.21i)28-s + (1.45 − 1.19i)29-s + (0.742 − 0.476i)32-s + ⋯ |
L(s) = 1 | + (−1.56 − 0.882i)2-s + (1.14 + 1.90i)4-s + (0.897 + 0.441i)7-s + (−0.0625 − 2.19i)8-s + (−0.809 + 0.587i)9-s + (0.198 − 0.980i)11-s + (−1.01 − 1.48i)14-s + (−0.799 + 1.51i)16-s + (1.78 − 0.204i)18-s + (−1.17 + 1.35i)22-s + (0.280 + 1.95i)23-s + (0.774 + 0.633i)25-s + (0.190 + 2.21i)28-s + (1.45 − 1.19i)29-s + (0.742 − 0.476i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5034789287\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5034789287\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.897 - 0.441i)T \) |
| 11 | \( 1 + (-0.198 + 0.980i)T \) |
good | 2 | \( 1 + (1.56 + 0.882i)T + (0.516 + 0.856i)T^{2} \) |
| 3 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.774 - 0.633i)T^{2} \) |
| 13 | \( 1 + (0.985 + 0.170i)T^{2} \) |
| 17 | \( 1 + (-0.993 - 0.113i)T^{2} \) |
| 19 | \( 1 + (0.870 + 0.491i)T^{2} \) |
| 23 | \( 1 + (-0.280 - 1.95i)T + (-0.959 + 0.281i)T^{2} \) |
| 29 | \( 1 + (-1.45 + 1.19i)T + (0.198 - 0.980i)T^{2} \) |
| 31 | \( 1 + (-0.897 - 0.441i)T^{2} \) |
| 37 | \( 1 + (0.569 - 0.240i)T + (0.696 - 0.717i)T^{2} \) |
| 41 | \( 1 + (-0.0855 + 0.996i)T^{2} \) |
| 43 | \( 1 + (-0.895 - 0.262i)T + (0.841 + 0.540i)T^{2} \) |
| 47 | \( 1 + (-0.974 - 0.226i)T^{2} \) |
| 53 | \( 1 + (-0.338 - 0.641i)T + (-0.564 + 0.825i)T^{2} \) |
| 59 | \( 1 + (-0.0855 - 0.996i)T^{2} \) |
| 61 | \( 1 + (-0.516 + 0.856i)T^{2} \) |
| 67 | \( 1 + (0.829 + 1.81i)T + (-0.654 + 0.755i)T^{2} \) |
| 71 | \( 1 + (0.0620 + 0.159i)T + (-0.736 + 0.676i)T^{2} \) |
| 73 | \( 1 + (-0.941 - 0.336i)T^{2} \) |
| 79 | \( 1 + (-1.18 + 1.54i)T + (-0.254 - 0.967i)T^{2} \) |
| 83 | \( 1 + (0.0285 + 0.999i)T^{2} \) |
| 89 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 97 | \( 1 + (-0.774 + 0.633i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48390274744416075637068461569, −9.312114746563803880322485874587, −8.818823082229829331394885817127, −8.050827641763656157352337794836, −7.52445572758515561686628028633, −6.09811907928549708494033232805, −5.03025920316182054748453053456, −3.39404504714056911796891050700, −2.49318329267615378582291260029, −1.28947261076670231649902458335,
1.03699163043897624869914898381, 2.49254413822245173933837881851, 4.41795286223806403484934551198, 5.43565008531586587670693974497, 6.70039870269663817642871297258, 6.95333667784314977845930233742, 8.201427775510295442955859847598, 8.572770436461026363904497239245, 9.354193005520817450856984706280, 10.46874848808380904390015389177