L(s) = 1 | + (−0.391 + 1.93i)2-s + (−2.65 − 1.12i)4-s + (−0.985 + 0.170i)7-s + (2.09 − 3.06i)8-s + (−0.809 − 0.587i)9-s + (−0.870 − 0.491i)11-s + (0.0562 − 1.96i)14-s + (3.08 + 3.17i)16-s + (1.45 − 1.33i)18-s + (1.29 − 1.48i)22-s + (−0.255 − 1.77i)23-s + (−0.254 − 0.967i)25-s + (2.80 + 0.653i)28-s + (−0.310 + 1.18i)29-s + (−4.22 + 2.71i)32-s + ⋯ |
L(s) = 1 | + (−0.391 + 1.93i)2-s + (−2.65 − 1.12i)4-s + (−0.985 + 0.170i)7-s + (2.09 − 3.06i)8-s + (−0.809 − 0.587i)9-s + (−0.870 − 0.491i)11-s + (0.0562 − 1.96i)14-s + (3.08 + 3.17i)16-s + (1.45 − 1.33i)18-s + (1.29 − 1.48i)22-s + (−0.255 − 1.77i)23-s + (−0.254 − 0.967i)25-s + (2.80 + 0.653i)28-s + (−0.310 + 1.18i)29-s + (−4.22 + 2.71i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2055587970\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2055587970\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.985 - 0.170i)T \) |
| 11 | \( 1 + (0.870 + 0.491i)T \) |
good | 2 | \( 1 + (0.391 - 1.93i)T + (-0.921 - 0.389i)T^{2} \) |
| 3 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (0.254 + 0.967i)T^{2} \) |
| 13 | \( 1 + (-0.897 + 0.441i)T^{2} \) |
| 17 | \( 1 + (0.736 + 0.676i)T^{2} \) |
| 19 | \( 1 + (-0.198 + 0.980i)T^{2} \) |
| 23 | \( 1 + (0.255 + 1.77i)T + (-0.959 + 0.281i)T^{2} \) |
| 29 | \( 1 + (0.310 - 1.18i)T + (-0.870 - 0.491i)T^{2} \) |
| 31 | \( 1 + (0.985 - 0.170i)T^{2} \) |
| 37 | \( 1 + (-0.319 + 0.529i)T + (-0.466 - 0.884i)T^{2} \) |
| 41 | \( 1 + (-0.974 + 0.226i)T^{2} \) |
| 43 | \( 1 + (1.33 + 0.392i)T + (0.841 + 0.540i)T^{2} \) |
| 47 | \( 1 + (-0.0855 - 0.996i)T^{2} \) |
| 53 | \( 1 + (1.39 - 1.43i)T + (-0.0285 - 0.999i)T^{2} \) |
| 59 | \( 1 + (-0.974 - 0.226i)T^{2} \) |
| 61 | \( 1 + (0.921 - 0.389i)T^{2} \) |
| 67 | \( 1 + (0.301 + 0.660i)T + (-0.654 + 0.755i)T^{2} \) |
| 71 | \( 1 + (1.94 - 0.111i)T + (0.993 - 0.113i)T^{2} \) |
| 73 | \( 1 + (-0.610 + 0.791i)T^{2} \) |
| 79 | \( 1 + (-0.161 - 0.0575i)T + (0.774 + 0.633i)T^{2} \) |
| 83 | \( 1 + (0.564 - 0.825i)T^{2} \) |
| 89 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 97 | \( 1 + (0.254 - 0.967i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03057670041244517938912480202, −9.052788470541685740641868398749, −8.600458440160262988167289331985, −7.78627346304315510128006573818, −6.73092405125789588379572829321, −6.17546429781975722209822451176, −5.49621048086998239244495389327, −4.41215698791392899666710617228, −3.11907671099406495166679990170, −0.23034595860646051389239846698,
1.82517675155935646380998969322, 2.90002417930045385538560916566, 3.59718321362664816432062928820, 4.81740109333891518130927429105, 5.71186429435863300157981159124, 7.51652736293260142299628727991, 8.161882431838936910405724891266, 9.223237836695490663303566579017, 9.825380294456941309940112997103, 10.36873307510174307619838606634