L(s) = 1 | + (−1.38 − 0.495i)2-s + (0.906 + 0.741i)4-s + (−0.736 + 0.676i)7-s + (−0.130 − 0.215i)8-s + (−0.809 − 0.587i)9-s + (0.610 − 0.791i)11-s + (1.35 − 0.573i)14-s + (−0.158 − 0.783i)16-s + (0.831 + 1.21i)18-s + (−1.23 + 0.796i)22-s + (0.825 − 1.80i)23-s + (0.897 + 0.441i)25-s + (−1.16 + 0.0668i)28-s + (1.74 − 0.859i)29-s + (−0.203 + 1.41i)32-s + ⋯ |
L(s) = 1 | + (−1.38 − 0.495i)2-s + (0.906 + 0.741i)4-s + (−0.736 + 0.676i)7-s + (−0.130 − 0.215i)8-s + (−0.809 − 0.587i)9-s + (0.610 − 0.791i)11-s + (1.35 − 0.573i)14-s + (−0.158 − 0.783i)16-s + (0.831 + 1.21i)18-s + (−1.23 + 0.796i)22-s + (0.825 − 1.80i)23-s + (0.897 + 0.441i)25-s + (−1.16 + 0.0668i)28-s + (1.74 − 0.859i)29-s + (−0.203 + 1.41i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.299 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.299 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4257523048\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4257523048\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.736 - 0.676i)T \) |
| 11 | \( 1 + (-0.610 + 0.791i)T \) |
good | 2 | \( 1 + (1.38 + 0.495i)T + (0.774 + 0.633i)T^{2} \) |
| 3 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.897 - 0.441i)T^{2} \) |
| 13 | \( 1 + (-0.993 - 0.113i)T^{2} \) |
| 17 | \( 1 + (0.564 - 0.825i)T^{2} \) |
| 19 | \( 1 + (-0.941 - 0.336i)T^{2} \) |
| 23 | \( 1 + (-0.825 + 1.80i)T + (-0.654 - 0.755i)T^{2} \) |
| 29 | \( 1 + (-1.74 + 0.859i)T + (0.610 - 0.791i)T^{2} \) |
| 31 | \( 1 + (0.736 - 0.676i)T^{2} \) |
| 37 | \( 1 + (0.157 - 0.597i)T + (-0.870 - 0.491i)T^{2} \) |
| 41 | \( 1 + (0.998 + 0.0570i)T^{2} \) |
| 43 | \( 1 + (0.260 - 0.300i)T + (-0.142 - 0.989i)T^{2} \) |
| 47 | \( 1 + (0.362 + 0.931i)T^{2} \) |
| 53 | \( 1 + (-0.276 + 1.36i)T + (-0.921 - 0.389i)T^{2} \) |
| 59 | \( 1 + (0.998 - 0.0570i)T^{2} \) |
| 61 | \( 1 + (-0.774 + 0.633i)T^{2} \) |
| 67 | \( 1 + (-0.895 + 0.262i)T + (0.841 - 0.540i)T^{2} \) |
| 71 | \( 1 + (1.39 + 1.43i)T + (-0.0285 + 0.999i)T^{2} \) |
| 73 | \( 1 + (-0.974 - 0.226i)T^{2} \) |
| 79 | \( 1 + (0.0620 + 0.722i)T + (-0.985 + 0.170i)T^{2} \) |
| 83 | \( 1 + (-0.516 - 0.856i)T^{2} \) |
| 89 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 97 | \( 1 + (-0.897 + 0.441i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12584533075947348908154795008, −9.234637684001040817335104669027, −8.702735902040767104693339260397, −8.247701427366400337022166680758, −6.75046986467858623241403956943, −6.24125157676032147942860588512, −4.93119476009017065724196545027, −3.25593671046780892004667938433, −2.55652556525686257663084419122, −0.78339943409515863563198125819,
1.29064049538377355599395017470, 2.95117857765928195466509149142, 4.27836262368380151036182076446, 5.56009360472334843593021183532, 6.78341100732626063046507563268, 7.12562262589664245562890960953, 8.109745507266599332152387305799, 8.935680357694808082275024998509, 9.553515787651814583928677534176, 10.37241530713158890223302728982