L(s) = 1 | + 4·5-s + 3·13-s − 4·17-s + 7·19-s + 4·23-s + 11·25-s + 8·29-s − 5·31-s + 3·37-s + 8·41-s − 11·43-s − 4·47-s − 4·53-s − 12·59-s + 2·61-s + 12·65-s + 3·67-s + 12·71-s − 73-s − 79-s − 12·83-s − 16·85-s + 8·89-s + 28·95-s + 2·97-s + 3·103-s − 12·107-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 0.832·13-s − 0.970·17-s + 1.60·19-s + 0.834·23-s + 11/5·25-s + 1.48·29-s − 0.898·31-s + 0.493·37-s + 1.24·41-s − 1.67·43-s − 0.583·47-s − 0.549·53-s − 1.56·59-s + 0.256·61-s + 1.48·65-s + 0.366·67-s + 1.42·71-s − 0.117·73-s − 0.112·79-s − 1.31·83-s − 1.73·85-s + 0.847·89-s + 2.87·95-s + 0.203·97-s + 0.295·103-s − 1.16·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.406447759\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.406447759\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 3 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 - 7 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 - 8 T + p T^{2} \) |
| 31 | \( 1 + 5 T + p T^{2} \) |
| 37 | \( 1 - 3 T + p T^{2} \) |
| 41 | \( 1 - 8 T + p T^{2} \) |
| 43 | \( 1 + 11 T + p T^{2} \) |
| 47 | \( 1 + 4 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 - 3 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 + T + p T^{2} \) |
| 79 | \( 1 + T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 8 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.029914304263440275179807233609, −6.99073012457980262460460889614, −6.50460480595903012290884191814, −5.85917455098918119000702316708, −5.20379662729353949209905069625, −4.58991405001185369392484558194, −3.33857183110001697601483928496, −2.69097320588257785838456916674, −1.74031860521530330425913347940, −1.01931657548992748446587886167,
1.01931657548992748446587886167, 1.74031860521530330425913347940, 2.69097320588257785838456916674, 3.33857183110001697601483928496, 4.58991405001185369392484558194, 5.20379662729353949209905069625, 5.85917455098918119000702316708, 6.50460480595903012290884191814, 6.99073012457980262460460889614, 8.029914304263440275179807233609