L(s) = 1 | + 0.717·5-s − 3i·11-s + 2.44i·13-s + 5.91·17-s + 5.91i·19-s − 4.24i·23-s − 4.48·25-s + 7.24i·29-s − 9.08i·31-s − 0.242·37-s + 11.8·41-s + 0.242·43-s − 5.91·47-s + 7.24i·53-s − 2.15i·55-s + ⋯ |
L(s) = 1 | + 0.320·5-s − 0.904i·11-s + 0.679i·13-s + 1.43·17-s + 1.35i·19-s − 0.884i·23-s − 0.897·25-s + 1.34i·29-s − 1.63i·31-s − 0.0398·37-s + 1.84·41-s + 0.0370·43-s − 0.862·47-s + 0.994i·53-s − 0.290i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.239i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.239i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.200046906\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.200046906\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 0.717T + 5T^{2} \) |
| 11 | \( 1 + 3iT - 11T^{2} \) |
| 13 | \( 1 - 2.44iT - 13T^{2} \) |
| 17 | \( 1 - 5.91T + 17T^{2} \) |
| 19 | \( 1 - 5.91iT - 19T^{2} \) |
| 23 | \( 1 + 4.24iT - 23T^{2} \) |
| 29 | \( 1 - 7.24iT - 29T^{2} \) |
| 31 | \( 1 + 9.08iT - 31T^{2} \) |
| 37 | \( 1 + 0.242T + 37T^{2} \) |
| 41 | \( 1 - 11.8T + 41T^{2} \) |
| 43 | \( 1 - 0.242T + 43T^{2} \) |
| 47 | \( 1 + 5.91T + 47T^{2} \) |
| 53 | \( 1 - 7.24iT - 53T^{2} \) |
| 59 | \( 1 - 8.06T + 59T^{2} \) |
| 61 | \( 1 - 1.01iT - 61T^{2} \) |
| 67 | \( 1 - 10T + 67T^{2} \) |
| 71 | \( 1 - 1.75iT - 71T^{2} \) |
| 73 | \( 1 - 1.43iT - 73T^{2} \) |
| 79 | \( 1 - 2.75T + 79T^{2} \) |
| 83 | \( 1 + 6.63T + 83T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 + 13.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.949549631543060558579561880902, −7.40178906351288472849955582304, −6.39213447868494801306739878555, −5.86102030555956092924136923804, −5.36582485953828354355700684498, −4.23053965716593619645422736435, −3.66456337620449242037908364184, −2.76737952802638415738256398601, −1.80035373753227269061797918010, −0.838318922216075097983801542521,
0.70958254669632545335344746530, 1.78488839669787893384490655466, 2.68572115816442472661767135595, 3.47950189876686875484464079628, 4.36771686339384526760028714452, 5.22263146620710600101849003613, 5.65885233081639516133178025845, 6.56836035194746369195629633849, 7.29021731622609340871497528101, 7.83016014299990476597126054553