L(s) = 1 | − 1.73·2-s + 2.73·3-s + 0.999·4-s + 5-s − 4.73·6-s − 2.73·7-s + 1.73·8-s + 4.46·9-s − 1.73·10-s + 4.73·11-s + 2.73·12-s − 4·13-s + 4.73·14-s + 2.73·15-s − 5·16-s − 17-s − 7.73·18-s − 1.46·19-s + 0.999·20-s − 7.46·21-s − 8.19·22-s − 8.19·23-s + 4.73·24-s + 25-s + 6.92·26-s + 3.99·27-s − 2.73·28-s + ⋯ |
L(s) = 1 | − 1.22·2-s + 1.57·3-s + 0.499·4-s + 0.447·5-s − 1.93·6-s − 1.03·7-s + 0.612·8-s + 1.48·9-s − 0.547·10-s + 1.42·11-s + 0.788·12-s − 1.10·13-s + 1.26·14-s + 0.705·15-s − 1.25·16-s − 0.242·17-s − 1.82·18-s − 0.335·19-s + 0.223·20-s − 1.62·21-s − 1.74·22-s − 1.70·23-s + 0.965·24-s + 0.200·25-s + 1.35·26-s + 0.769·27-s − 0.516·28-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8213918690 |
L(21) |
≈ |
0.8213918690 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 17 | 1+T |
good | 2 | 1+1.73T+2T2 |
| 3 | 1−2.73T+3T2 |
| 7 | 1+2.73T+7T2 |
| 11 | 1−4.73T+11T2 |
| 13 | 1+4T+13T2 |
| 19 | 1+1.46T+19T2 |
| 23 | 1+8.19T+23T2 |
| 29 | 1+3.46T+29T2 |
| 31 | 1−3.26T+31T2 |
| 37 | 1+0.535T+37T2 |
| 41 | 1+3.46T+41T2 |
| 43 | 1+0.535T+43T2 |
| 47 | 1−12.9T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1−2.53T+59T2 |
| 61 | 1+4.92T+61T2 |
| 67 | 1+10T+67T2 |
| 71 | 1−11.6T+71T2 |
| 73 | 1−6.39T+73T2 |
| 79 | 1−14.5T+79T2 |
| 83 | 1−8.53T+83T2 |
| 89 | 1−4.39T+89T2 |
| 97 | 1+4.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.18010413167243495194910902705, −13.50753370512687398199216081828, −12.18240140832389069041995272520, −10.22908803495156393026872439186, −9.492184568279700076490858135884, −8.969589372484756977018515056691, −7.79032767204837674777103178108, −6.63915818226960438386848743997, −3.95656870881855527374068847494, −2.17582772087516134866370577695,
2.17582772087516134866370577695, 3.95656870881855527374068847494, 6.63915818226960438386848743997, 7.79032767204837674777103178108, 8.969589372484756977018515056691, 9.492184568279700076490858135884, 10.22908803495156393026872439186, 12.18240140832389069041995272520, 13.50753370512687398199216081828, 14.18010413167243495194910902705