Properties

Label 2-85-1.1-c1-0-0
Degree $2$
Conductor $85$
Sign $1$
Analytic cond. $0.678728$
Root an. cond. $0.823849$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·2-s + 2.73·3-s + 0.999·4-s + 5-s − 4.73·6-s − 2.73·7-s + 1.73·8-s + 4.46·9-s − 1.73·10-s + 4.73·11-s + 2.73·12-s − 4·13-s + 4.73·14-s + 2.73·15-s − 5·16-s − 17-s − 7.73·18-s − 1.46·19-s + 0.999·20-s − 7.46·21-s − 8.19·22-s − 8.19·23-s + 4.73·24-s + 25-s + 6.92·26-s + 3.99·27-s − 2.73·28-s + ⋯
L(s)  = 1  − 1.22·2-s + 1.57·3-s + 0.499·4-s + 0.447·5-s − 1.93·6-s − 1.03·7-s + 0.612·8-s + 1.48·9-s − 0.547·10-s + 1.42·11-s + 0.788·12-s − 1.10·13-s + 1.26·14-s + 0.705·15-s − 1.25·16-s − 0.242·17-s − 1.82·18-s − 0.335·19-s + 0.223·20-s − 1.62·21-s − 1.74·22-s − 1.70·23-s + 0.965·24-s + 0.200·25-s + 1.35·26-s + 0.769·27-s − 0.516·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(85\)    =    \(5 \cdot 17\)
Sign: $1$
Analytic conductor: \(0.678728\)
Root analytic conductor: \(0.823849\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 85,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8213918690\)
\(L(\frac12)\) \(\approx\) \(0.8213918690\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 + 1.73T + 2T^{2} \)
3 \( 1 - 2.73T + 3T^{2} \)
7 \( 1 + 2.73T + 7T^{2} \)
11 \( 1 - 4.73T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
19 \( 1 + 1.46T + 19T^{2} \)
23 \( 1 + 8.19T + 23T^{2} \)
29 \( 1 + 3.46T + 29T^{2} \)
31 \( 1 - 3.26T + 31T^{2} \)
37 \( 1 + 0.535T + 37T^{2} \)
41 \( 1 + 3.46T + 41T^{2} \)
43 \( 1 + 0.535T + 43T^{2} \)
47 \( 1 - 12.9T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 2.53T + 59T^{2} \)
61 \( 1 + 4.92T + 61T^{2} \)
67 \( 1 + 10T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 - 6.39T + 73T^{2} \)
79 \( 1 - 14.5T + 79T^{2} \)
83 \( 1 - 8.53T + 83T^{2} \)
89 \( 1 - 4.39T + 89T^{2} \)
97 \( 1 + 4.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.18010413167243495194910902705, −13.50753370512687398199216081828, −12.18240140832389069041995272520, −10.22908803495156393026872439186, −9.492184568279700076490858135884, −8.969589372484756977018515056691, −7.79032767204837674777103178108, −6.63915818226960438386848743997, −3.95656870881855527374068847494, −2.17582772087516134866370577695, 2.17582772087516134866370577695, 3.95656870881855527374068847494, 6.63915818226960438386848743997, 7.79032767204837674777103178108, 8.969589372484756977018515056691, 9.492184568279700076490858135884, 10.22908803495156393026872439186, 12.18240140832389069041995272520, 13.50753370512687398199216081828, 14.18010413167243495194910902705

Graph of the $Z$-function along the critical line