L(s) = 1 | − 2.07i·2-s + (1.78 + 1.78i)3-s − 2.28·4-s + (−0.707 − 0.707i)5-s + (3.69 − 3.69i)6-s + (−0.260 + 0.260i)7-s + 0.595i·8-s + 3.36i·9-s + (−1.46 + 1.46i)10-s + (−1.76 + 1.76i)11-s + (−4.08 − 4.08i)12-s − 4.68·13-s + (0.540 + 0.540i)14-s − 2.52i·15-s − 3.34·16-s + (3.84 − 1.48i)17-s + ⋯ |
L(s) = 1 | − 1.46i·2-s + (1.03 + 1.03i)3-s − 1.14·4-s + (−0.316 − 0.316i)5-s + (1.50 − 1.50i)6-s + (−0.0986 + 0.0986i)7-s + 0.210i·8-s + 1.12i·9-s + (−0.463 + 0.463i)10-s + (−0.532 + 0.532i)11-s + (−1.17 − 1.17i)12-s − 1.30·13-s + (0.144 + 0.144i)14-s − 0.651i·15-s − 0.835·16-s + (0.932 − 0.360i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.471+0.881i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.471+0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.471+0.881i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.471+0.881i)
|
Particular Values
L(1) |
≈ |
0.987545−0.591503i |
L(21) |
≈ |
0.987545−0.591503i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.707+0.707i)T |
| 17 | 1+(−3.84+1.48i)T |
good | 2 | 1+2.07iT−2T2 |
| 3 | 1+(−1.78−1.78i)T+3iT2 |
| 7 | 1+(0.260−0.260i)T−7iT2 |
| 11 | 1+(1.76−1.76i)T−11iT2 |
| 13 | 1+4.68T+13T2 |
| 19 | 1−7.16iT−19T2 |
| 23 | 1+(−4.73+4.73i)T−23iT2 |
| 29 | 1+(4.79+4.79i)T+29iT2 |
| 31 | 1+(−3.40−3.40i)T+31iT2 |
| 37 | 1+(1.37+1.37i)T+37iT2 |
| 41 | 1+(−1.66+1.66i)T−41iT2 |
| 43 | 1+11.7iT−43T2 |
| 47 | 1+1.65T+47T2 |
| 53 | 1−6.81iT−53T2 |
| 59 | 1+0.484iT−59T2 |
| 61 | 1+(−4.86+4.86i)T−61iT2 |
| 67 | 1+1.87T+67T2 |
| 71 | 1+(−1.21−1.21i)T+71iT2 |
| 73 | 1+(−0.202−0.202i)T+73iT2 |
| 79 | 1+(−3.80+3.80i)T−79iT2 |
| 83 | 1+9.94iT−83T2 |
| 89 | 1+4.30T+89T2 |
| 97 | 1+(−9.01−9.01i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.06128522225399863656765103072, −12.64170636757837624318781762062, −12.03557549874680266361706248384, −10.45800332988412824064329003933, −9.916671992158567678504254953536, −9.000528741146007901423530254936, −7.66026382121540309232587253662, −4.89236162483093334867968802127, −3.72085121446463978584232695108, −2.50606871569465001846473175196,
2.86124431411402519785983983850, 5.19449471782889344578460285821, 6.82466121839099380516016418398, 7.47767565254877150870191224753, 8.266036093035617607070625286636, 9.444125492648529809661950699553, 11.33766067025112354811655048670, 12.90048161249393624089736919365, 13.61531947705170210897344216945, 14.68612910734167593333995276869