L(s) = 1 | − 2.07i·2-s + (1.78 + 1.78i)3-s − 2.28·4-s + (−0.707 − 0.707i)5-s + (3.69 − 3.69i)6-s + (−0.260 + 0.260i)7-s + 0.595i·8-s + 3.36i·9-s + (−1.46 + 1.46i)10-s + (−1.76 + 1.76i)11-s + (−4.08 − 4.08i)12-s − 4.68·13-s + (0.540 + 0.540i)14-s − 2.52i·15-s − 3.34·16-s + (3.84 − 1.48i)17-s + ⋯ |
L(s) = 1 | − 1.46i·2-s + (1.03 + 1.03i)3-s − 1.14·4-s + (−0.316 − 0.316i)5-s + (1.50 − 1.50i)6-s + (−0.0986 + 0.0986i)7-s + 0.210i·8-s + 1.12i·9-s + (−0.463 + 0.463i)10-s + (−0.532 + 0.532i)11-s + (−1.17 − 1.17i)12-s − 1.30·13-s + (0.144 + 0.144i)14-s − 0.651i·15-s − 0.835·16-s + (0.932 − 0.360i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 + 0.881i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.471 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.987545 - 0.591503i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.987545 - 0.591503i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (-3.84 + 1.48i)T \) |
good | 2 | \( 1 + 2.07iT - 2T^{2} \) |
| 3 | \( 1 + (-1.78 - 1.78i)T + 3iT^{2} \) |
| 7 | \( 1 + (0.260 - 0.260i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.76 - 1.76i)T - 11iT^{2} \) |
| 13 | \( 1 + 4.68T + 13T^{2} \) |
| 19 | \( 1 - 7.16iT - 19T^{2} \) |
| 23 | \( 1 + (-4.73 + 4.73i)T - 23iT^{2} \) |
| 29 | \( 1 + (4.79 + 4.79i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.40 - 3.40i)T + 31iT^{2} \) |
| 37 | \( 1 + (1.37 + 1.37i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.66 + 1.66i)T - 41iT^{2} \) |
| 43 | \( 1 + 11.7iT - 43T^{2} \) |
| 47 | \( 1 + 1.65T + 47T^{2} \) |
| 53 | \( 1 - 6.81iT - 53T^{2} \) |
| 59 | \( 1 + 0.484iT - 59T^{2} \) |
| 61 | \( 1 + (-4.86 + 4.86i)T - 61iT^{2} \) |
| 67 | \( 1 + 1.87T + 67T^{2} \) |
| 71 | \( 1 + (-1.21 - 1.21i)T + 71iT^{2} \) |
| 73 | \( 1 + (-0.202 - 0.202i)T + 73iT^{2} \) |
| 79 | \( 1 + (-3.80 + 3.80i)T - 79iT^{2} \) |
| 83 | \( 1 + 9.94iT - 83T^{2} \) |
| 89 | \( 1 + 4.30T + 89T^{2} \) |
| 97 | \( 1 + (-9.01 - 9.01i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.06128522225399863656765103072, −12.64170636757837624318781762062, −12.03557549874680266361706248384, −10.45800332988412824064329003933, −9.916671992158567678504254953536, −9.000528741146007901423530254936, −7.66026382121540309232587253662, −4.89236162483093334867968802127, −3.72085121446463978584232695108, −2.50606871569465001846473175196,
2.86124431411402519785983983850, 5.19449471782889344578460285821, 6.82466121839099380516016418398, 7.47767565254877150870191224753, 8.266036093035617607070625286636, 9.444125492648529809661950699553, 11.33766067025112354811655048670, 12.90048161249393624089736919365, 13.61531947705170210897344216945, 14.68612910734167593333995276869