L(s) = 1 | − 2.51i·2-s + (−0.887 − 0.887i)3-s − 4.31·4-s + (0.707 + 0.707i)5-s + (−2.22 + 2.22i)6-s + (1.14 − 1.14i)7-s + 5.80i·8-s − 1.42i·9-s + (1.77 − 1.77i)10-s + (−2.32 + 2.32i)11-s + (3.82 + 3.82i)12-s + 6.35·13-s + (−2.86 − 2.86i)14-s − 1.25i·15-s + 5.96·16-s + (−0.768 − 4.05i)17-s + ⋯ |
L(s) = 1 | − 1.77i·2-s + (−0.512 − 0.512i)3-s − 2.15·4-s + (0.316 + 0.316i)5-s + (−0.909 + 0.909i)6-s + (0.431 − 0.431i)7-s + 2.05i·8-s − 0.475i·9-s + (0.561 − 0.561i)10-s + (−0.700 + 0.700i)11-s + (1.10 + 1.10i)12-s + 1.76·13-s + (−0.766 − 0.766i)14-s − 0.323i·15-s + 1.49·16-s + (−0.186 − 0.982i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(−0.952+0.304i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(−0.952+0.304i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
−0.952+0.304i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), −0.952+0.304i)
|
Particular Values
L(1) |
≈ |
0.124877−0.799401i |
L(21) |
≈ |
0.124877−0.799401i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.707−0.707i)T |
| 17 | 1+(0.768+4.05i)T |
good | 2 | 1+2.51iT−2T2 |
| 3 | 1+(0.887+0.887i)T+3iT2 |
| 7 | 1+(−1.14+1.14i)T−7iT2 |
| 11 | 1+(2.32−2.32i)T−11iT2 |
| 13 | 1−6.35T+13T2 |
| 19 | 1−0.747iT−19T2 |
| 23 | 1+(−0.101+0.101i)T−23iT2 |
| 29 | 1+(−6.22−6.22i)T+29iT2 |
| 31 | 1+(−5.10−5.10i)T+31iT2 |
| 37 | 1+(0.439+0.439i)T+37iT2 |
| 41 | 1+(4.49−4.49i)T−41iT2 |
| 43 | 1+2.74iT−43T2 |
| 47 | 1+11.9T+47T2 |
| 53 | 1+2.71iT−53T2 |
| 59 | 1+12.6iT−59T2 |
| 61 | 1+(−0.328+0.328i)T−61iT2 |
| 67 | 1−1.81T+67T2 |
| 71 | 1+(3.01+3.01i)T+71iT2 |
| 73 | 1+(0.856+0.856i)T+73iT2 |
| 79 | 1+(3.57−3.57i)T−79iT2 |
| 83 | 1−3.58iT−83T2 |
| 89 | 1+10.5T+89T2 |
| 97 | 1+(4.92+4.92i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.37438224957663163590749953527, −12.51727732887984269458626764163, −11.51112950842836935700911668658, −10.78221570045610602864840604547, −9.811487014441597487893363119817, −8.484574285480603727748938226460, −6.67603997415276975541573465569, −4.89271477085151024316889919946, −3.25361316616112751865260897916, −1.36563827234338205544906405839,
4.40170198694495347286724613915, 5.59709554769783033229486120873, 6.23710216114107452558859306894, 8.149157095639185608129496376654, 8.559976702924126159326895352796, 10.16259663421182381543220163336, 11.36778488857008855211238513064, 13.28839778436496098482745670303, 13.71895947333878974007550448317, 15.17074458995310432444567510042