L(s) = 1 | − 2.17·2-s + 0.539i·3-s + 2.70·4-s − i·5-s − 1.17i·6-s + 4.87i·7-s − 1.53·8-s + 2.70·9-s + 2.17i·10-s + 3.17i·11-s + 1.46i·12-s + 2.63·13-s − 10.5i·14-s + 0.539·15-s − 2.07·16-s + (−3.24 − 2.53i)17-s + ⋯ |
L(s) = 1 | − 1.53·2-s + 0.311i·3-s + 1.35·4-s − 0.447i·5-s − 0.477i·6-s + 1.84i·7-s − 0.544·8-s + 0.903·9-s + 0.686i·10-s + 0.955i·11-s + 0.421i·12-s + 0.729·13-s − 2.82i·14-s + 0.139·15-s − 0.519·16-s + (−0.787 − 0.615i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.615−0.787i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.615−0.787i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.615−0.787i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.615−0.787i)
|
Particular Values
L(1) |
≈ |
0.455653+0.222171i |
L(21) |
≈ |
0.455653+0.222171i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+iT |
| 17 | 1+(3.24+2.53i)T |
good | 2 | 1+2.17T+2T2 |
| 3 | 1−0.539iT−3T2 |
| 7 | 1−4.87iT−7T2 |
| 11 | 1−3.17iT−11T2 |
| 13 | 1−2.63T+13T2 |
| 19 | 1−1.07T+19T2 |
| 23 | 1+5.21iT−23T2 |
| 29 | 1−2.92iT−29T2 |
| 31 | 1+4.09iT−31T2 |
| 37 | 1+5.26iT−37T2 |
| 41 | 1−5.60iT−41T2 |
| 43 | 1−3.36T+43T2 |
| 47 | 1+6.78T+47T2 |
| 53 | 1−3.75T+53T2 |
| 59 | 1+2.34T+59T2 |
| 61 | 1+12.2iT−61T2 |
| 67 | 1−10.2T+67T2 |
| 71 | 1+4.06iT−71T2 |
| 73 | 1+11.0iT−73T2 |
| 79 | 1+6.92iT−79T2 |
| 83 | 1−8.23T+83T2 |
| 89 | 1−7.15T+89T2 |
| 97 | 1−8.18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.95296491144703727800965362269, −13.02572931974601969823710537263, −12.04275257309838249969100381306, −10.87138738782782313888309989145, −9.544123839418434955514328880299, −9.103096593238461609267116044419, −8.017770023677950638430227825144, −6.56523488289068496718447896444, −4.81491545421468211833334731675, −2.07961361918891517013062975765,
1.21563611534517583450234751434, 3.91769165052456558310298023946, 6.60113214829784771655336847090, 7.38525042743959833248473495426, 8.373305896050367527806367713962, 9.824598648838181641358882583407, 10.62113558302734283458921638363, 11.29900725424366086247172431906, 13.29713450455463627154021523586, 13.83206094318183029450694449026