L(s) = 1 | − 2.17·2-s + 0.539i·3-s + 2.70·4-s − i·5-s − 1.17i·6-s + 4.87i·7-s − 1.53·8-s + 2.70·9-s + 2.17i·10-s + 3.17i·11-s + 1.46i·12-s + 2.63·13-s − 10.5i·14-s + 0.539·15-s − 2.07·16-s + (−3.24 − 2.53i)17-s + ⋯ |
L(s) = 1 | − 1.53·2-s + 0.311i·3-s + 1.35·4-s − 0.447i·5-s − 0.477i·6-s + 1.84i·7-s − 0.544·8-s + 0.903·9-s + 0.686i·10-s + 0.955i·11-s + 0.421i·12-s + 0.729·13-s − 2.82i·14-s + 0.139·15-s − 0.519·16-s + (−0.787 − 0.615i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 - 0.787i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 - 0.787i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.455653 + 0.222171i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.455653 + 0.222171i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + iT \) |
| 17 | \( 1 + (3.24 + 2.53i)T \) |
good | 2 | \( 1 + 2.17T + 2T^{2} \) |
| 3 | \( 1 - 0.539iT - 3T^{2} \) |
| 7 | \( 1 - 4.87iT - 7T^{2} \) |
| 11 | \( 1 - 3.17iT - 11T^{2} \) |
| 13 | \( 1 - 2.63T + 13T^{2} \) |
| 19 | \( 1 - 1.07T + 19T^{2} \) |
| 23 | \( 1 + 5.21iT - 23T^{2} \) |
| 29 | \( 1 - 2.92iT - 29T^{2} \) |
| 31 | \( 1 + 4.09iT - 31T^{2} \) |
| 37 | \( 1 + 5.26iT - 37T^{2} \) |
| 41 | \( 1 - 5.60iT - 41T^{2} \) |
| 43 | \( 1 - 3.36T + 43T^{2} \) |
| 47 | \( 1 + 6.78T + 47T^{2} \) |
| 53 | \( 1 - 3.75T + 53T^{2} \) |
| 59 | \( 1 + 2.34T + 59T^{2} \) |
| 61 | \( 1 + 12.2iT - 61T^{2} \) |
| 67 | \( 1 - 10.2T + 67T^{2} \) |
| 71 | \( 1 + 4.06iT - 71T^{2} \) |
| 73 | \( 1 + 11.0iT - 73T^{2} \) |
| 79 | \( 1 + 6.92iT - 79T^{2} \) |
| 83 | \( 1 - 8.23T + 83T^{2} \) |
| 89 | \( 1 - 7.15T + 89T^{2} \) |
| 97 | \( 1 - 8.18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.95296491144703727800965362269, −13.02572931974601969823710537263, −12.04275257309838249969100381306, −10.87138738782782313888309989145, −9.544123839418434955514328880299, −9.103096593238461609267116044419, −8.017770023677950638430227825144, −6.56523488289068496718447896444, −4.81491545421468211833334731675, −2.07961361918891517013062975765,
1.21563611534517583450234751434, 3.91769165052456558310298023946, 6.60113214829784771655336847090, 7.38525042743959833248473495426, 8.373305896050367527806367713962, 9.824598648838181641358882583407, 10.62113558302734283458921638363, 11.29900725424366086247172431906, 13.29713450455463627154021523586, 13.83206094318183029450694449026