L(s) = 1 | + (−1.09 − 1.09i)2-s + (2.77 − 1.15i)3-s + 0.419i·4-s + (0.382 + 0.923i)5-s + (−4.32 − 1.79i)6-s + (−1.32 + 3.19i)7-s + (−1.73 + 1.73i)8-s + (4.27 − 4.27i)9-s + (0.595 − 1.43i)10-s + (−3.92 − 1.62i)11-s + (0.483 + 1.16i)12-s + 0.127i·13-s + (4.96 − 2.05i)14-s + (2.12 + 2.12i)15-s + 4.66·16-s + (−4.11 − 0.193i)17-s + ⋯ |
L(s) = 1 | + (−0.777 − 0.777i)2-s + (1.60 − 0.664i)3-s + 0.209i·4-s + (0.171 + 0.413i)5-s + (−1.76 − 0.731i)6-s + (−0.499 + 1.20i)7-s + (−0.614 + 0.614i)8-s + (1.42 − 1.42i)9-s + (0.188 − 0.454i)10-s + (−1.18 − 0.489i)11-s + (0.139 + 0.336i)12-s + 0.0353i·13-s + (1.32 − 0.549i)14-s + (0.549 + 0.549i)15-s + 1.16·16-s + (−0.998 − 0.0468i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.294+0.955i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.294+0.955i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.294+0.955i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(36,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.294+0.955i)
|
Particular Values
L(1) |
≈ |
0.784527−0.578962i |
L(21) |
≈ |
0.784527−0.578962i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.382−0.923i)T |
| 17 | 1+(4.11+0.193i)T |
good | 2 | 1+(1.09+1.09i)T+2iT2 |
| 3 | 1+(−2.77+1.15i)T+(2.12−2.12i)T2 |
| 7 | 1+(1.32−3.19i)T+(−4.94−4.94i)T2 |
| 11 | 1+(3.92+1.62i)T+(7.77+7.77i)T2 |
| 13 | 1−0.127iT−13T2 |
| 19 | 1+(−1.81−1.81i)T+19iT2 |
| 23 | 1+(−3.00−1.24i)T+(16.2+16.2i)T2 |
| 29 | 1+(1.87+4.53i)T+(−20.5+20.5i)T2 |
| 31 | 1+(−4.95+2.05i)T+(21.9−21.9i)T2 |
| 37 | 1+(1.63−0.677i)T+(26.1−26.1i)T2 |
| 41 | 1+(−3.85+9.29i)T+(−28.9−28.9i)T2 |
| 43 | 1+(−1.79+1.79i)T−43iT2 |
| 47 | 1−4.59iT−47T2 |
| 53 | 1+(−1.15−1.15i)T+53iT2 |
| 59 | 1+(4.34−4.34i)T−59iT2 |
| 61 | 1+(1.54−3.73i)T+(−43.1−43.1i)T2 |
| 67 | 1+6.88T+67T2 |
| 71 | 1+(6.66−2.76i)T+(50.2−50.2i)T2 |
| 73 | 1+(5.59+13.5i)T+(−51.6+51.6i)T2 |
| 79 | 1+(4.75+1.97i)T+(55.8+55.8i)T2 |
| 83 | 1+(−10.2−10.2i)T+83iT2 |
| 89 | 1+0.600iT−89T2 |
| 97 | 1+(2.93+7.09i)T+(−68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.89387786816538677169346709168, −13.03394027331866263843404685158, −11.89851705744823061792927714786, −10.50179204478189145769082746530, −9.330462709402958446569956007474, −8.745910606947320553786258201445, −7.65198205947563186366460164248, −5.94717550848239506590141142360, −2.97881761641922208990511247548, −2.26527285271161702860616254555,
3.06045011009649777364574448665, 4.53968901180004964880402790617, 6.98046322637125613878017282889, 7.84991687850485776524214418464, 8.817581727842394682961901378373, 9.684679158294848214187703316714, 10.51948075369233928363166974878, 12.94252736877124134952363595356, 13.46064690164771067306134289972, 14.73165090128531663686775856847