L(s) = 1 | + (−1.09 − 1.09i)2-s + (2.77 − 1.15i)3-s + 0.419i·4-s + (0.382 + 0.923i)5-s + (−4.32 − 1.79i)6-s + (−1.32 + 3.19i)7-s + (−1.73 + 1.73i)8-s + (4.27 − 4.27i)9-s + (0.595 − 1.43i)10-s + (−3.92 − 1.62i)11-s + (0.483 + 1.16i)12-s + 0.127i·13-s + (4.96 − 2.05i)14-s + (2.12 + 2.12i)15-s + 4.66·16-s + (−4.11 − 0.193i)17-s + ⋯ |
L(s) = 1 | + (−0.777 − 0.777i)2-s + (1.60 − 0.664i)3-s + 0.209i·4-s + (0.171 + 0.413i)5-s + (−1.76 − 0.731i)6-s + (−0.499 + 1.20i)7-s + (−0.614 + 0.614i)8-s + (1.42 − 1.42i)9-s + (0.188 − 0.454i)10-s + (−1.18 − 0.489i)11-s + (0.139 + 0.336i)12-s + 0.0353i·13-s + (1.32 − 0.549i)14-s + (0.549 + 0.549i)15-s + 1.16·16-s + (−0.998 − 0.0468i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.294 + 0.955i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.294 + 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.784527 - 0.578962i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.784527 - 0.578962i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.382 - 0.923i)T \) |
| 17 | \( 1 + (4.11 + 0.193i)T \) |
good | 2 | \( 1 + (1.09 + 1.09i)T + 2iT^{2} \) |
| 3 | \( 1 + (-2.77 + 1.15i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (1.32 - 3.19i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (3.92 + 1.62i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 0.127iT - 13T^{2} \) |
| 19 | \( 1 + (-1.81 - 1.81i)T + 19iT^{2} \) |
| 23 | \( 1 + (-3.00 - 1.24i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (1.87 + 4.53i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-4.95 + 2.05i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (1.63 - 0.677i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-3.85 + 9.29i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-1.79 + 1.79i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.59iT - 47T^{2} \) |
| 53 | \( 1 + (-1.15 - 1.15i)T + 53iT^{2} \) |
| 59 | \( 1 + (4.34 - 4.34i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.54 - 3.73i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 6.88T + 67T^{2} \) |
| 71 | \( 1 + (6.66 - 2.76i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (5.59 + 13.5i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (4.75 + 1.97i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-10.2 - 10.2i)T + 83iT^{2} \) |
| 89 | \( 1 + 0.600iT - 89T^{2} \) |
| 97 | \( 1 + (2.93 + 7.09i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.89387786816538677169346709168, −13.03394027331866263843404685158, −11.89851705744823061792927714786, −10.50179204478189145769082746530, −9.330462709402958446569956007474, −8.745910606947320553786258201445, −7.65198205947563186366460164248, −5.94717550848239506590141142360, −2.97881761641922208990511247548, −2.26527285271161702860616254555,
3.06045011009649777364574448665, 4.53968901180004964880402790617, 6.98046322637125613878017282889, 7.84991687850485776524214418464, 8.817581727842394682961901378373, 9.684679158294848214187703316714, 10.51948075369233928363166974878, 12.94252736877124134952363595356, 13.46064690164771067306134289972, 14.73165090128531663686775856847