L(s) = 1 | − i·2-s + (0.292 + 0.292i)3-s − 4-s + (0.292 − 0.292i)6-s + (−1 + i)7-s + i·8-s − 2.82i·9-s + (−1.58 + 1.58i)11-s + (−0.292 − 0.292i)12-s + 3·13-s + (1 + i)14-s + 16-s + (3.53 − 2.12i)17-s − 2.82·18-s − 7.24i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.169 + 0.169i)3-s − 0.5·4-s + (0.119 − 0.119i)6-s + (−0.377 + 0.377i)7-s + 0.353i·8-s − 0.942i·9-s + (−0.478 + 0.478i)11-s + (−0.0845 − 0.0845i)12-s + 0.832·13-s + (0.267 + 0.267i)14-s + 0.250·16-s + (0.857 − 0.514i)17-s − 0.666·18-s − 1.66i·19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(−0.122+0.992i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(−0.122+0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
−0.122+0.992i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), −0.122+0.992i)
|
Particular Values
L(1) |
≈ |
0.922327−1.04283i |
L(21) |
≈ |
0.922327−1.04283i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 17 | 1+(−3.53+2.12i)T |
good | 3 | 1+(−0.292−0.292i)T+3iT2 |
| 7 | 1+(1−i)T−7iT2 |
| 11 | 1+(1.58−1.58i)T−11iT2 |
| 13 | 1−3T+13T2 |
| 19 | 1+7.24iT−19T2 |
| 23 | 1+(−2.82+2.82i)T−23iT2 |
| 29 | 1+(0.707+0.707i)T+29iT2 |
| 31 | 1+(5.36+5.36i)T+31iT2 |
| 37 | 1+(−5.24−5.24i)T+37iT2 |
| 41 | 1+(−4.41+4.41i)T−41iT2 |
| 43 | 1+3.75iT−43T2 |
| 47 | 1−1.58T+47T2 |
| 53 | 1−3iT−53T2 |
| 59 | 1+12.8iT−59T2 |
| 61 | 1+(−6.12+6.12i)T−61iT2 |
| 67 | 1+14.4T+67T2 |
| 71 | 1+(−3.70−3.70i)T+71iT2 |
| 73 | 1+(−8.36−8.36i)T+73iT2 |
| 79 | 1+(−0.242+0.242i)T−79iT2 |
| 83 | 1+4.24iT−83T2 |
| 89 | 1+11.4T+89T2 |
| 97 | 1+(−0.121−0.121i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.792928641929643171930948952500, −9.316035858628484906174804627578, −8.594587430417202139576266044506, −7.44613429980914007088852648104, −6.44291292838065701549130433527, −5.42544197220060500323131489109, −4.36826912728141451748654689284, −3.31605220674106955059622117537, −2.47740990261862954494754564337, −0.73749579370959235806260053374,
1.42945286990051811107075447952, 3.16656000560235816804874695653, 4.08068577399684227193699904427, 5.45141151500490773865980505005, 5.92607948608329026762596753526, 7.14138543116041787564182575874, 7.86983604127261168191530144105, 8.433605096009157564431371012317, 9.478969152381042346448325714617, 10.44400455177865267159835543640