L(s) = 1 | − i·2-s + (−1.90 − 1.90i)3-s − 4-s + (−1.90 + 1.90i)6-s + (2.69 − 2.69i)7-s + i·8-s + 4.28i·9-s + (3.82 − 3.82i)11-s + (1.90 + 1.90i)12-s − 2.11·13-s + (−2.69 − 2.69i)14-s + 16-s + (−0.908 − 4.02i)17-s + 4.28·18-s − 7.10i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−1.10 − 1.10i)3-s − 0.5·4-s + (−0.779 + 0.779i)6-s + (1.02 − 1.02i)7-s + 0.353i·8-s + 1.42i·9-s + (1.15 − 1.15i)11-s + (0.550 + 0.550i)12-s − 0.586·13-s + (−0.721 − 0.721i)14-s + 0.250·16-s + (−0.220 − 0.975i)17-s + 1.00·18-s − 1.62i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.904 - 0.426i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.904 - 0.426i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.222703 + 0.994178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.222703 + 0.994178i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (0.908 + 4.02i)T \) |
good | 3 | \( 1 + (1.90 + 1.90i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2.69 + 2.69i)T - 7iT^{2} \) |
| 11 | \( 1 + (-3.82 + 3.82i)T - 11iT^{2} \) |
| 13 | \( 1 + 2.11T + 13T^{2} \) |
| 19 | \( 1 + 7.10iT - 19T^{2} \) |
| 23 | \( 1 + (-0.585 + 0.585i)T - 23iT^{2} \) |
| 29 | \( 1 + (-3.49 - 3.49i)T + 29iT^{2} \) |
| 31 | \( 1 + (0.779 + 0.779i)T + 31iT^{2} \) |
| 37 | \( 1 + (-7.52 - 7.52i)T + 37iT^{2} \) |
| 41 | \( 1 + (4.39 - 4.39i)T - 41iT^{2} \) |
| 43 | \( 1 - 7.81iT - 43T^{2} \) |
| 47 | \( 1 + 2.29T + 47T^{2} \) |
| 53 | \( 1 + 3.28iT - 53T^{2} \) |
| 59 | \( 1 + 0.555iT - 59T^{2} \) |
| 61 | \( 1 + (-2.89 + 2.89i)T - 61iT^{2} \) |
| 67 | \( 1 - 3.97T + 67T^{2} \) |
| 71 | \( 1 + (4.59 + 4.59i)T + 71iT^{2} \) |
| 73 | \( 1 + (7.45 + 7.45i)T + 73iT^{2} \) |
| 79 | \( 1 + (9.61 - 9.61i)T - 79iT^{2} \) |
| 83 | \( 1 - 4.04iT - 83T^{2} \) |
| 89 | \( 1 + 11.5T + 89T^{2} \) |
| 97 | \( 1 + (-0.600 - 0.600i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.920293666893193757359941877377, −8.860400436596583012811897533497, −7.897850678906681521414739950837, −6.99585262807052972866382013324, −6.38950873029964362860951459612, −5.07869111605367247375296072039, −4.48581724619899995667787966151, −2.92481290835022831738068855657, −1.37340181775045590364771481408, −0.65309757836195555815646416128,
1.83912353696628495215158021427, 4.01301594205041649020233746286, 4.50831386080924658383799506347, 5.53249250567467896633882862744, 5.97401305183480450728319597127, 7.10627650275090400400137261747, 8.200226014956690316310789830313, 9.047496512101520098293021208522, 9.868083128251760000144692833474, 10.47280411247258515802795753731