L(s) = 1 | − i·2-s + (−1.90 − 1.90i)3-s − 4-s + (−1.90 + 1.90i)6-s + (2.69 − 2.69i)7-s + i·8-s + 4.28i·9-s + (3.82 − 3.82i)11-s + (1.90 + 1.90i)12-s − 2.11·13-s + (−2.69 − 2.69i)14-s + 16-s + (−0.908 − 4.02i)17-s + 4.28·18-s − 7.10i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−1.10 − 1.10i)3-s − 0.5·4-s + (−0.779 + 0.779i)6-s + (1.02 − 1.02i)7-s + 0.353i·8-s + 1.42i·9-s + (1.15 − 1.15i)11-s + (0.550 + 0.550i)12-s − 0.586·13-s + (−0.721 − 0.721i)14-s + 0.250·16-s + (−0.220 − 0.975i)17-s + 1.00·18-s − 1.62i·19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(−0.904−0.426i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(−0.904−0.426i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
−0.904−0.426i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), −0.904−0.426i)
|
Particular Values
L(1) |
≈ |
0.222703+0.994178i |
L(21) |
≈ |
0.222703+0.994178i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 17 | 1+(0.908+4.02i)T |
good | 3 | 1+(1.90+1.90i)T+3iT2 |
| 7 | 1+(−2.69+2.69i)T−7iT2 |
| 11 | 1+(−3.82+3.82i)T−11iT2 |
| 13 | 1+2.11T+13T2 |
| 19 | 1+7.10iT−19T2 |
| 23 | 1+(−0.585+0.585i)T−23iT2 |
| 29 | 1+(−3.49−3.49i)T+29iT2 |
| 31 | 1+(0.779+0.779i)T+31iT2 |
| 37 | 1+(−7.52−7.52i)T+37iT2 |
| 41 | 1+(4.39−4.39i)T−41iT2 |
| 43 | 1−7.81iT−43T2 |
| 47 | 1+2.29T+47T2 |
| 53 | 1+3.28iT−53T2 |
| 59 | 1+0.555iT−59T2 |
| 61 | 1+(−2.89+2.89i)T−61iT2 |
| 67 | 1−3.97T+67T2 |
| 71 | 1+(4.59+4.59i)T+71iT2 |
| 73 | 1+(7.45+7.45i)T+73iT2 |
| 79 | 1+(9.61−9.61i)T−79iT2 |
| 83 | 1−4.04iT−83T2 |
| 89 | 1+11.5T+89T2 |
| 97 | 1+(−0.600−0.600i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.920293666893193757359941877377, −8.860400436596583012811897533497, −7.897850678906681521414739950837, −6.99585262807052972866382013324, −6.38950873029964362860951459612, −5.07869111605367247375296072039, −4.48581724619899995667787966151, −2.92481290835022831738068855657, −1.37340181775045590364771481408, −0.65309757836195555815646416128,
1.83912353696628495215158021427, 4.01301594205041649020233746286, 4.50831386080924658383799506347, 5.53249250567467896633882862744, 5.97401305183480450728319597127, 7.10627650275090400400137261747, 8.200226014956690316310789830313, 9.047496512101520098293021208522, 9.868083128251760000144692833474, 10.47280411247258515802795753731