L(s) = 1 | − i·2-s + (1.70 + 1.70i)3-s − 4-s + (1.70 − 1.70i)6-s + (−1 + i)7-s + i·8-s + 2.82i·9-s + (−4.41 + 4.41i)11-s + (−1.70 − 1.70i)12-s + 3·13-s + (1 + i)14-s + 16-s + (−3.53 + 2.12i)17-s + 2.82·18-s + 1.24i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.985 + 0.985i)3-s − 0.5·4-s + (0.696 − 0.696i)6-s + (−0.377 + 0.377i)7-s + 0.353i·8-s + 0.942i·9-s + (−1.33 + 1.33i)11-s + (−0.492 − 0.492i)12-s + 0.832·13-s + (0.267 + 0.267i)14-s + 0.250·16-s + (−0.857 + 0.514i)17-s + 0.666·18-s + 0.285i·19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(0.122−0.992i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(0.122−0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
0.122−0.992i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), 0.122−0.992i)
|
Particular Values
L(1) |
≈ |
1.16829+1.03329i |
L(21) |
≈ |
1.16829+1.03329i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 17 | 1+(3.53−2.12i)T |
good | 3 | 1+(−1.70−1.70i)T+3iT2 |
| 7 | 1+(1−i)T−7iT2 |
| 11 | 1+(4.41−4.41i)T−11iT2 |
| 13 | 1−3T+13T2 |
| 19 | 1−1.24iT−19T2 |
| 23 | 1+(2.82−2.82i)T−23iT2 |
| 29 | 1+(−0.707−0.707i)T+29iT2 |
| 31 | 1+(−7.36−7.36i)T+31iT2 |
| 37 | 1+(3.24+3.24i)T+37iT2 |
| 41 | 1+(−1.58+1.58i)T−41iT2 |
| 43 | 1+12.2iT−43T2 |
| 47 | 1−4.41T+47T2 |
| 53 | 1−3iT−53T2 |
| 59 | 1−6.89iT−59T2 |
| 61 | 1+(−1.87+1.87i)T−61iT2 |
| 67 | 1−2.48T+67T2 |
| 71 | 1+(−2.29−2.29i)T+71iT2 |
| 73 | 1+(4.36+4.36i)T+73iT2 |
| 79 | 1+(8.24−8.24i)T−79iT2 |
| 83 | 1−4.24iT−83T2 |
| 89 | 1−5.48T+89T2 |
| 97 | 1+(4.12+4.12i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32385633440884296043644101620, −9.674708386917633464537013254231, −8.802634427448273357752119410690, −8.299119314179656622759427767009, −7.14421767467650115528285186245, −5.73700370047887424424130565433, −4.67167820542052246345106106572, −3.90227813510474451603400544847, −2.91116516467249981356759512570, −2.03227463506447347816024187161,
0.65710634214172662455328054846, 2.46200061442239177351263155582, 3.33267270459464070028522390797, 4.65227444461460451360459633276, 5.97929583843138150803825606952, 6.58999761359573228457737170864, 7.59002070891298547810864378977, 8.256847447933813019895573484881, 8.656077595071778500645043837184, 9.773673771962375245665599334870