L(s) = 1 | + 2.79·3-s − 3·5-s + 7-s + 4.79·9-s + 3.79·11-s + 13-s − 8.37·15-s + 3.79·17-s − 19-s + 2.79·21-s + 4.58·23-s + 4·25-s + 4.99·27-s − 3.79·29-s + 7.37·31-s + 10.5·33-s − 3·35-s − 5·37-s + 2.79·39-s − 3.79·41-s − 2·43-s − 14.3·45-s + 10.5·47-s + 49-s + 10.5·51-s + 8.37·53-s − 11.3·55-s + ⋯ |
L(s) = 1 | + 1.61·3-s − 1.34·5-s + 0.377·7-s + 1.59·9-s + 1.14·11-s + 0.277·13-s − 2.16·15-s + 0.919·17-s − 0.229·19-s + 0.609·21-s + 0.955·23-s + 0.800·25-s + 0.962·27-s − 0.704·29-s + 1.32·31-s + 1.84·33-s − 0.507·35-s − 0.821·37-s + 0.446·39-s − 0.592·41-s − 0.304·43-s − 2.14·45-s + 1.54·47-s + 0.142·49-s + 1.48·51-s + 1.15·53-s − 1.53·55-s + ⋯ |
Λ(s)=(=(8512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.694053126 |
L(21) |
≈ |
3.694053126 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 3 | 1−2.79T+3T2 |
| 5 | 1+3T+5T2 |
| 11 | 1−3.79T+11T2 |
| 13 | 1−T+13T2 |
| 17 | 1−3.79T+17T2 |
| 23 | 1−4.58T+23T2 |
| 29 | 1+3.79T+29T2 |
| 31 | 1−7.37T+31T2 |
| 37 | 1+5T+37T2 |
| 41 | 1+3.79T+41T2 |
| 43 | 1+2T+43T2 |
| 47 | 1−10.5T+47T2 |
| 53 | 1−8.37T+53T2 |
| 59 | 1+12.1T+59T2 |
| 61 | 1−T+61T2 |
| 67 | 1−9.37T+67T2 |
| 71 | 1+12.1T+71T2 |
| 73 | 1−16.3T+73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1+14.3T+83T2 |
| 89 | 1−7.58T+89T2 |
| 97 | 1+7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.899059610424442737721966313960, −7.27806321378636324971419931553, −6.82046336853401144973704014953, −5.69062052750856939954129073537, −4.60546983234004483835077327838, −4.03128320830289887892689200710, −3.48273773988637319191263379962, −2.90904162589133298160690701316, −1.81028748186173786243750636227, −0.918274648196623251441518733459,
0.918274648196623251441518733459, 1.81028748186173786243750636227, 2.90904162589133298160690701316, 3.48273773988637319191263379962, 4.03128320830289887892689200710, 4.60546983234004483835077327838, 5.69062052750856939954129073537, 6.82046336853401144973704014953, 7.27806321378636324971419931553, 7.899059610424442737721966313960