L(s) = 1 | + 1.61·3-s + 4.23·5-s + 7-s − 0.381·9-s − 2.61·11-s − 3.47·13-s + 6.85·15-s − 5.85·17-s + 19-s + 1.61·21-s + 8.23·23-s + 12.9·25-s − 5.47·27-s + 4.61·29-s + 3.85·31-s − 4.23·33-s + 4.23·35-s + 8.23·37-s − 5.61·39-s + 11.5·41-s + 4.47·43-s − 1.61·45-s − 7.47·47-s + 49-s − 9.47·51-s − 6.09·53-s − 11.0·55-s + ⋯ |
L(s) = 1 | + 0.934·3-s + 1.89·5-s + 0.377·7-s − 0.127·9-s − 0.789·11-s − 0.962·13-s + 1.76·15-s − 1.41·17-s + 0.229·19-s + 0.353·21-s + 1.71·23-s + 2.58·25-s − 1.05·27-s + 0.857·29-s + 0.692·31-s − 0.737·33-s + 0.716·35-s + 1.35·37-s − 0.899·39-s + 1.80·41-s + 0.681·43-s − 0.241·45-s − 1.08·47-s + 0.142·49-s − 1.32·51-s − 0.836·53-s − 1.49·55-s + ⋯ |
Λ(s)=(=(8512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.189625279 |
L(21) |
≈ |
4.189625279 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 19 | 1−T |
good | 3 | 1−1.61T+3T2 |
| 5 | 1−4.23T+5T2 |
| 11 | 1+2.61T+11T2 |
| 13 | 1+3.47T+13T2 |
| 17 | 1+5.85T+17T2 |
| 23 | 1−8.23T+23T2 |
| 29 | 1−4.61T+29T2 |
| 31 | 1−3.85T+31T2 |
| 37 | 1−8.23T+37T2 |
| 41 | 1−11.5T+41T2 |
| 43 | 1−4.47T+43T2 |
| 47 | 1+7.47T+47T2 |
| 53 | 1+6.09T+53T2 |
| 59 | 1−11T+59T2 |
| 61 | 1−4.23T+61T2 |
| 67 | 1+7.56T+67T2 |
| 71 | 1−3.76T+71T2 |
| 73 | 1−3.61T+73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1−10.5T+83T2 |
| 89 | 1+15.7T+89T2 |
| 97 | 1+3.47T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.889763638627080904797154722078, −7.07666420384606181151944598699, −6.41597735150515538066262257814, −5.68564352726399266896976539462, −4.98482593387121022959827339150, −4.49207863582566691064157493999, −2.99929835083547694025198292649, −2.52451419717471534028990093556, −2.16272039062793630980081983116, −0.960471341176697098285565153514,
0.960471341176697098285565153514, 2.16272039062793630980081983116, 2.52451419717471534028990093556, 2.99929835083547694025198292649, 4.49207863582566691064157493999, 4.98482593387121022959827339150, 5.68564352726399266896976539462, 6.41597735150515538066262257814, 7.07666420384606181151944598699, 7.889763638627080904797154722078