L(s) = 1 | − 2.16·3-s − 4.17·5-s − 7-s + 1.70·9-s + 2.97·11-s − 4.43·13-s + 9.05·15-s + 5.05·17-s − 19-s + 2.16·21-s + 1.98·23-s + 12.4·25-s + 2.80·27-s − 1.00·29-s + 3.05·31-s − 6.44·33-s + 4.17·35-s − 10.6·37-s + 9.61·39-s − 9.85·41-s + 5.68·43-s − 7.12·45-s − 13.1·47-s + 49-s − 10.9·51-s + 10.0·53-s − 12.4·55-s + ⋯ |
L(s) = 1 | − 1.25·3-s − 1.86·5-s − 0.377·7-s + 0.568·9-s + 0.895·11-s − 1.22·13-s + 2.33·15-s + 1.22·17-s − 0.229·19-s + 0.473·21-s + 0.413·23-s + 2.48·25-s + 0.540·27-s − 0.187·29-s + 0.548·31-s − 1.12·33-s + 0.705·35-s − 1.74·37-s + 1.54·39-s − 1.53·41-s + 0.867·43-s − 1.06·45-s − 1.91·47-s + 0.142·49-s − 1.53·51-s + 1.37·53-s − 1.67·55-s + ⋯ |
Λ(s)=(=(8512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3061336291 |
L(21) |
≈ |
0.3061336291 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 19 | 1+T |
good | 3 | 1+2.16T+3T2 |
| 5 | 1+4.17T+5T2 |
| 11 | 1−2.97T+11T2 |
| 13 | 1+4.43T+13T2 |
| 17 | 1−5.05T+17T2 |
| 23 | 1−1.98T+23T2 |
| 29 | 1+1.00T+29T2 |
| 31 | 1−3.05T+31T2 |
| 37 | 1+10.6T+37T2 |
| 41 | 1+9.85T+41T2 |
| 43 | 1−5.68T+43T2 |
| 47 | 1+13.1T+47T2 |
| 53 | 1−10.0T+53T2 |
| 59 | 1+1.75T+59T2 |
| 61 | 1−5.57T+61T2 |
| 67 | 1+12.8T+67T2 |
| 71 | 1+10.4T+71T2 |
| 73 | 1+2.97T+73T2 |
| 79 | 1+8.52T+79T2 |
| 83 | 1+15.8T+83T2 |
| 89 | 1+3.74T+89T2 |
| 97 | 1−10.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.50003713512315809412267016357, −7.11864466793522236685330400282, −6.55855045363588306235594036132, −5.63953768049422939712616523786, −4.93011773784328329825412438058, −4.40113519190492222659876012980, −3.54408350880450614561084097468, −2.97768380500426873244738915300, −1.34561557985656094445373364899, −0.31375759169221242631910114845,
0.31375759169221242631910114845, 1.34561557985656094445373364899, 2.97768380500426873244738915300, 3.54408350880450614561084097468, 4.40113519190492222659876012980, 4.93011773784328329825412438058, 5.63953768049422939712616523786, 6.55855045363588306235594036132, 7.11864466793522236685330400282, 7.50003713512315809412267016357