Properties

Label 2-8512-1.1-c1-0-12
Degree $2$
Conductor $8512$
Sign $1$
Analytic cond. $67.9686$
Root an. cond. $8.24431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.16·3-s − 4.17·5-s − 7-s + 1.70·9-s + 2.97·11-s − 4.43·13-s + 9.05·15-s + 5.05·17-s − 19-s + 2.16·21-s + 1.98·23-s + 12.4·25-s + 2.80·27-s − 1.00·29-s + 3.05·31-s − 6.44·33-s + 4.17·35-s − 10.6·37-s + 9.61·39-s − 9.85·41-s + 5.68·43-s − 7.12·45-s − 13.1·47-s + 49-s − 10.9·51-s + 10.0·53-s − 12.4·55-s + ⋯
L(s)  = 1  − 1.25·3-s − 1.86·5-s − 0.377·7-s + 0.568·9-s + 0.895·11-s − 1.22·13-s + 2.33·15-s + 1.22·17-s − 0.229·19-s + 0.473·21-s + 0.413·23-s + 2.48·25-s + 0.540·27-s − 0.187·29-s + 0.548·31-s − 1.12·33-s + 0.705·35-s − 1.74·37-s + 1.54·39-s − 1.53·41-s + 0.867·43-s − 1.06·45-s − 1.91·47-s + 0.142·49-s − 1.53·51-s + 1.37·53-s − 1.67·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8512\)    =    \(2^{6} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(67.9686\)
Root analytic conductor: \(8.24431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8512,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3061336291\)
\(L(\frac12)\) \(\approx\) \(0.3061336291\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + 2.16T + 3T^{2} \)
5 \( 1 + 4.17T + 5T^{2} \)
11 \( 1 - 2.97T + 11T^{2} \)
13 \( 1 + 4.43T + 13T^{2} \)
17 \( 1 - 5.05T + 17T^{2} \)
23 \( 1 - 1.98T + 23T^{2} \)
29 \( 1 + 1.00T + 29T^{2} \)
31 \( 1 - 3.05T + 31T^{2} \)
37 \( 1 + 10.6T + 37T^{2} \)
41 \( 1 + 9.85T + 41T^{2} \)
43 \( 1 - 5.68T + 43T^{2} \)
47 \( 1 + 13.1T + 47T^{2} \)
53 \( 1 - 10.0T + 53T^{2} \)
59 \( 1 + 1.75T + 59T^{2} \)
61 \( 1 - 5.57T + 61T^{2} \)
67 \( 1 + 12.8T + 67T^{2} \)
71 \( 1 + 10.4T + 71T^{2} \)
73 \( 1 + 2.97T + 73T^{2} \)
79 \( 1 + 8.52T + 79T^{2} \)
83 \( 1 + 15.8T + 83T^{2} \)
89 \( 1 + 3.74T + 89T^{2} \)
97 \( 1 - 10.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50003713512315809412267016357, −7.11864466793522236685330400282, −6.55855045363588306235594036132, −5.63953768049422939712616523786, −4.93011773784328329825412438058, −4.40113519190492222659876012980, −3.54408350880450614561084097468, −2.97768380500426873244738915300, −1.34561557985656094445373364899, −0.31375759169221242631910114845, 0.31375759169221242631910114845, 1.34561557985656094445373364899, 2.97768380500426873244738915300, 3.54408350880450614561084097468, 4.40113519190492222659876012980, 4.93011773784328329825412438058, 5.63953768049422939712616523786, 6.55855045363588306235594036132, 7.11864466793522236685330400282, 7.50003713512315809412267016357

Graph of the $Z$-function along the critical line