L(s) = 1 | − 0.381·3-s + 5-s − 7-s − 2.85·9-s − 5.09·11-s − 2.23·13-s − 0.381·15-s − 5.38·17-s − 19-s + 0.381·21-s − 4.70·23-s − 4·25-s + 2.23·27-s + 5.85·29-s + 4.61·31-s + 1.94·33-s − 35-s − 6.70·37-s + 0.854·39-s − 11.0·41-s − 0.472·43-s − 2.85·45-s + 8.70·47-s + 49-s + 2.05·51-s − 1.32·53-s − 5.09·55-s + ⋯ |
L(s) = 1 | − 0.220·3-s + 0.447·5-s − 0.377·7-s − 0.951·9-s − 1.53·11-s − 0.620·13-s − 0.0986·15-s − 1.30·17-s − 0.229·19-s + 0.0833·21-s − 0.981·23-s − 0.800·25-s + 0.430·27-s + 1.08·29-s + 0.829·31-s + 0.338·33-s − 0.169·35-s − 1.10·37-s + 0.136·39-s − 1.73·41-s − 0.0720·43-s − 0.425·45-s + 1.27·47-s + 0.142·49-s + 0.287·51-s − 0.182·53-s − 0.686·55-s + ⋯ |
Λ(s)=(=(8512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5411487308 |
L(21) |
≈ |
0.5411487308 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 19 | 1+T |
good | 3 | 1+0.381T+3T2 |
| 5 | 1−T+5T2 |
| 11 | 1+5.09T+11T2 |
| 13 | 1+2.23T+13T2 |
| 17 | 1+5.38T+17T2 |
| 23 | 1+4.70T+23T2 |
| 29 | 1−5.85T+29T2 |
| 31 | 1−4.61T+31T2 |
| 37 | 1+6.70T+37T2 |
| 41 | 1+11.0T+41T2 |
| 43 | 1+0.472T+43T2 |
| 47 | 1−8.70T+47T2 |
| 53 | 1+1.32T+53T2 |
| 59 | 1−2.70T+59T2 |
| 61 | 1−3.47T+61T2 |
| 67 | 1−9.09T+67T2 |
| 71 | 1+11.1T+71T2 |
| 73 | 1+12.0T+73T2 |
| 79 | 1+10.9T+79T2 |
| 83 | 1−12.3T+83T2 |
| 89 | 1−10.1T+89T2 |
| 97 | 1+4.70T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84603463354390528991459396507, −7.01325854932454351956224155297, −6.32797983846667977445671949667, −5.72798736689698697143935543489, −5.07822728077104275182769266687, −4.43814594818679021550988964113, −3.31900225799846868766661896904, −2.52836848408661493356716141149, −2.04548452184538125360581546211, −0.33264512993748612238798931157,
0.33264512993748612238798931157, 2.04548452184538125360581546211, 2.52836848408661493356716141149, 3.31900225799846868766661896904, 4.43814594818679021550988964113, 5.07822728077104275182769266687, 5.72798736689698697143935543489, 6.32797983846667977445671949667, 7.01325854932454351956224155297, 7.84603463354390528991459396507