Properties

Label 2-8512-1.1-c1-0-130
Degree $2$
Conductor $8512$
Sign $1$
Analytic cond. $67.9686$
Root an. cond. $8.24431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.19·3-s − 1.16·5-s + 7-s + 7.19·9-s + 5.39·11-s + 1.73·13-s − 3.72·15-s − 1.79·17-s + 19-s + 3.19·21-s − 2.08·23-s − 3.63·25-s + 13.3·27-s − 3.75·29-s + 3.79·31-s + 17.2·33-s − 1.16·35-s + 1.78·37-s + 5.53·39-s + 8.34·41-s − 2.48·43-s − 8.39·45-s + 5.30·47-s + 49-s − 5.71·51-s + 0.355·53-s − 6.30·55-s + ⋯
L(s)  = 1  + 1.84·3-s − 0.522·5-s + 0.377·7-s + 2.39·9-s + 1.62·11-s + 0.480·13-s − 0.962·15-s − 0.434·17-s + 0.229·19-s + 0.696·21-s − 0.435·23-s − 0.727·25-s + 2.57·27-s − 0.696·29-s + 0.680·31-s + 3.00·33-s − 0.197·35-s + 0.292·37-s + 0.885·39-s + 1.30·41-s − 0.379·43-s − 1.25·45-s + 0.774·47-s + 0.142·49-s − 0.800·51-s + 0.0488·53-s − 0.849·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8512\)    =    \(2^{6} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(67.9686\)
Root analytic conductor: \(8.24431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8512,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.947261011\)
\(L(\frac12)\) \(\approx\) \(4.947261011\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 - 3.19T + 3T^{2} \)
5 \( 1 + 1.16T + 5T^{2} \)
11 \( 1 - 5.39T + 11T^{2} \)
13 \( 1 - 1.73T + 13T^{2} \)
17 \( 1 + 1.79T + 17T^{2} \)
23 \( 1 + 2.08T + 23T^{2} \)
29 \( 1 + 3.75T + 29T^{2} \)
31 \( 1 - 3.79T + 31T^{2} \)
37 \( 1 - 1.78T + 37T^{2} \)
41 \( 1 - 8.34T + 41T^{2} \)
43 \( 1 + 2.48T + 43T^{2} \)
47 \( 1 - 5.30T + 47T^{2} \)
53 \( 1 - 0.355T + 53T^{2} \)
59 \( 1 - 12.9T + 59T^{2} \)
61 \( 1 + 5.52T + 61T^{2} \)
67 \( 1 - 7.98T + 67T^{2} \)
71 \( 1 + 9.55T + 71T^{2} \)
73 \( 1 + 6.65T + 73T^{2} \)
79 \( 1 - 5.39T + 79T^{2} \)
83 \( 1 + 1.80T + 83T^{2} \)
89 \( 1 + 7.13T + 89T^{2} \)
97 \( 1 + 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83194338444419474201704120677, −7.35605443070910934219327434808, −6.65372417449940990494826517754, −5.83584740499722414748750476563, −4.53192887989612724201959672065, −3.98606358511433435601850117274, −3.64945430738242362554342540131, −2.67033283258827167698856788834, −1.87263005678221448891748804803, −1.08475015464377075407662070246, 1.08475015464377075407662070246, 1.87263005678221448891748804803, 2.67033283258827167698856788834, 3.64945430738242362554342540131, 3.98606358511433435601850117274, 4.53192887989612724201959672065, 5.83584740499722414748750476563, 6.65372417449940990494826517754, 7.35605443070910934219327434808, 7.83194338444419474201704120677

Graph of the $Z$-function along the critical line