L(s) = 1 | + 3.19·3-s − 1.16·5-s + 7-s + 7.19·9-s + 5.39·11-s + 1.73·13-s − 3.72·15-s − 1.79·17-s + 19-s + 3.19·21-s − 2.08·23-s − 3.63·25-s + 13.3·27-s − 3.75·29-s + 3.79·31-s + 17.2·33-s − 1.16·35-s + 1.78·37-s + 5.53·39-s + 8.34·41-s − 2.48·43-s − 8.39·45-s + 5.30·47-s + 49-s − 5.71·51-s + 0.355·53-s − 6.30·55-s + ⋯ |
L(s) = 1 | + 1.84·3-s − 0.522·5-s + 0.377·7-s + 2.39·9-s + 1.62·11-s + 0.480·13-s − 0.962·15-s − 0.434·17-s + 0.229·19-s + 0.696·21-s − 0.435·23-s − 0.727·25-s + 2.57·27-s − 0.696·29-s + 0.680·31-s + 3.00·33-s − 0.197·35-s + 0.292·37-s + 0.885·39-s + 1.30·41-s − 0.379·43-s − 1.25·45-s + 0.774·47-s + 0.142·49-s − 0.800·51-s + 0.0488·53-s − 0.849·55-s + ⋯ |
Λ(s)=(=(8512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.947261011 |
L(21) |
≈ |
4.947261011 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 19 | 1−T |
good | 3 | 1−3.19T+3T2 |
| 5 | 1+1.16T+5T2 |
| 11 | 1−5.39T+11T2 |
| 13 | 1−1.73T+13T2 |
| 17 | 1+1.79T+17T2 |
| 23 | 1+2.08T+23T2 |
| 29 | 1+3.75T+29T2 |
| 31 | 1−3.79T+31T2 |
| 37 | 1−1.78T+37T2 |
| 41 | 1−8.34T+41T2 |
| 43 | 1+2.48T+43T2 |
| 47 | 1−5.30T+47T2 |
| 53 | 1−0.355T+53T2 |
| 59 | 1−12.9T+59T2 |
| 61 | 1+5.52T+61T2 |
| 67 | 1−7.98T+67T2 |
| 71 | 1+9.55T+71T2 |
| 73 | 1+6.65T+73T2 |
| 79 | 1−5.39T+79T2 |
| 83 | 1+1.80T+83T2 |
| 89 | 1+7.13T+89T2 |
| 97 | 1+15.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83194338444419474201704120677, −7.35605443070910934219327434808, −6.65372417449940990494826517754, −5.83584740499722414748750476563, −4.53192887989612724201959672065, −3.98606358511433435601850117274, −3.64945430738242362554342540131, −2.67033283258827167698856788834, −1.87263005678221448891748804803, −1.08475015464377075407662070246,
1.08475015464377075407662070246, 1.87263005678221448891748804803, 2.67033283258827167698856788834, 3.64945430738242362554342540131, 3.98606358511433435601850117274, 4.53192887989612724201959672065, 5.83584740499722414748750476563, 6.65372417449940990494826517754, 7.35605443070910934219327434808, 7.83194338444419474201704120677