L(s) = 1 | − 0.185·3-s − 0.737·5-s − 7-s − 2.96·9-s − 0.814·11-s − 0.677·13-s + 0.137·15-s + 3.00·17-s + 19-s + 0.185·21-s + 3.24·23-s − 4.45·25-s + 1.10·27-s + 7.57·29-s − 0.853·31-s + 0.151·33-s + 0.737·35-s − 0.870·37-s + 0.125·39-s + 1.42·41-s − 1.10·43-s + 2.18·45-s − 1.87·47-s + 49-s − 0.559·51-s + 5.00·53-s + 0.600·55-s + ⋯ |
L(s) = 1 | − 0.107·3-s − 0.329·5-s − 0.377·7-s − 0.988·9-s − 0.245·11-s − 0.187·13-s + 0.0353·15-s + 0.729·17-s + 0.229·19-s + 0.0405·21-s + 0.676·23-s − 0.891·25-s + 0.213·27-s + 1.40·29-s − 0.153·31-s + 0.0263·33-s + 0.124·35-s − 0.143·37-s + 0.0201·39-s + 0.223·41-s − 0.168·43-s + 0.325·45-s − 0.273·47-s + 0.142·49-s − 0.0782·51-s + 0.687·53-s + 0.0809·55-s + ⋯ |
Λ(s)=(=(8512s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8512s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 19 | 1−T |
good | 3 | 1+0.185T+3T2 |
| 5 | 1+0.737T+5T2 |
| 11 | 1+0.814T+11T2 |
| 13 | 1+0.677T+13T2 |
| 17 | 1−3.00T+17T2 |
| 23 | 1−3.24T+23T2 |
| 29 | 1−7.57T+29T2 |
| 31 | 1+0.853T+31T2 |
| 37 | 1+0.870T+37T2 |
| 41 | 1−1.42T+41T2 |
| 43 | 1+1.10T+43T2 |
| 47 | 1+1.87T+47T2 |
| 53 | 1−5.00T+53T2 |
| 59 | 1−6.54T+59T2 |
| 61 | 1−2.00T+61T2 |
| 67 | 1+12.4T+67T2 |
| 71 | 1−8.86T+71T2 |
| 73 | 1+12.6T+73T2 |
| 79 | 1+1.72T+79T2 |
| 83 | 1−15.3T+83T2 |
| 89 | 1+7.37T+89T2 |
| 97 | 1+7.28T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.47344265592978470499434958217, −6.76160461643818653939943954086, −5.99951104888279126586183068115, −5.41970013391720671249735557688, −4.71732286207248904467726041822, −3.76197200219744052448254976411, −3.06826506186789931603679496117, −2.40748404145750326418098403700, −1.08506239799303951038936861999, 0,
1.08506239799303951038936861999, 2.40748404145750326418098403700, 3.06826506186789931603679496117, 3.76197200219744052448254976411, 4.71732286207248904467726041822, 5.41970013391720671249735557688, 5.99951104888279126586183068115, 6.76160461643818653939943954086, 7.47344265592978470499434958217