Properties

Label 2-8512-1.1-c1-0-131
Degree $2$
Conductor $8512$
Sign $-1$
Analytic cond. $67.9686$
Root an. cond. $8.24431$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.185·3-s − 0.737·5-s − 7-s − 2.96·9-s − 0.814·11-s − 0.677·13-s + 0.137·15-s + 3.00·17-s + 19-s + 0.185·21-s + 3.24·23-s − 4.45·25-s + 1.10·27-s + 7.57·29-s − 0.853·31-s + 0.151·33-s + 0.737·35-s − 0.870·37-s + 0.125·39-s + 1.42·41-s − 1.10·43-s + 2.18·45-s − 1.87·47-s + 49-s − 0.559·51-s + 5.00·53-s + 0.600·55-s + ⋯
L(s)  = 1  − 0.107·3-s − 0.329·5-s − 0.377·7-s − 0.988·9-s − 0.245·11-s − 0.187·13-s + 0.0353·15-s + 0.729·17-s + 0.229·19-s + 0.0405·21-s + 0.676·23-s − 0.891·25-s + 0.213·27-s + 1.40·29-s − 0.153·31-s + 0.0263·33-s + 0.124·35-s − 0.143·37-s + 0.0201·39-s + 0.223·41-s − 0.168·43-s + 0.325·45-s − 0.273·47-s + 0.142·49-s − 0.0782·51-s + 0.687·53-s + 0.0809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8512\)    =    \(2^{6} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(67.9686\)
Root analytic conductor: \(8.24431\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + 0.185T + 3T^{2} \)
5 \( 1 + 0.737T + 5T^{2} \)
11 \( 1 + 0.814T + 11T^{2} \)
13 \( 1 + 0.677T + 13T^{2} \)
17 \( 1 - 3.00T + 17T^{2} \)
23 \( 1 - 3.24T + 23T^{2} \)
29 \( 1 - 7.57T + 29T^{2} \)
31 \( 1 + 0.853T + 31T^{2} \)
37 \( 1 + 0.870T + 37T^{2} \)
41 \( 1 - 1.42T + 41T^{2} \)
43 \( 1 + 1.10T + 43T^{2} \)
47 \( 1 + 1.87T + 47T^{2} \)
53 \( 1 - 5.00T + 53T^{2} \)
59 \( 1 - 6.54T + 59T^{2} \)
61 \( 1 - 2.00T + 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 - 8.86T + 71T^{2} \)
73 \( 1 + 12.6T + 73T^{2} \)
79 \( 1 + 1.72T + 79T^{2} \)
83 \( 1 - 15.3T + 83T^{2} \)
89 \( 1 + 7.37T + 89T^{2} \)
97 \( 1 + 7.28T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47344265592978470499434958217, −6.76160461643818653939943954086, −5.99951104888279126586183068115, −5.41970013391720671249735557688, −4.71732286207248904467726041822, −3.76197200219744052448254976411, −3.06826506186789931603679496117, −2.40748404145750326418098403700, −1.08506239799303951038936861999, 0, 1.08506239799303951038936861999, 2.40748404145750326418098403700, 3.06826506186789931603679496117, 3.76197200219744052448254976411, 4.71732286207248904467726041822, 5.41970013391720671249735557688, 5.99951104888279126586183068115, 6.76160461643818653939943954086, 7.47344265592978470499434958217

Graph of the $Z$-function along the critical line