L(s) = 1 | + (−0.207 − 0.358i)2-s + (0.914 − 1.58i)4-s + (−0.5 − 0.866i)5-s + 1.82·7-s − 1.58·8-s + (−0.207 + 0.358i)10-s + 2.82·11-s + (0.914 − 1.58i)13-s + (−0.378 − 0.655i)14-s + (−1.49 − 2.59i)16-s + (−0.585 − 1.01i)17-s + (4 + 1.73i)19-s − 1.82·20-s + (−0.585 − 1.01i)22-s + (−0.414 + 0.717i)23-s + ⋯ |
L(s) = 1 | + (−0.146 − 0.253i)2-s + (0.457 − 0.791i)4-s + (−0.223 − 0.387i)5-s + 0.691·7-s − 0.560·8-s + (−0.0654 + 0.113i)10-s + 0.852·11-s + (0.253 − 0.439i)13-s + (−0.101 − 0.175i)14-s + (−0.374 − 0.649i)16-s + (−0.142 − 0.246i)17-s + (0.917 + 0.397i)19-s − 0.408·20-s + (−0.124 − 0.216i)22-s + (−0.0863 + 0.149i)23-s + ⋯ |
Λ(s)=(=(855s/2ΓC(s)L(s)(−0.0977+0.995i)Λ(2−s)
Λ(s)=(=(855s/2ΓC(s+1/2)L(s)(−0.0977+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
855
= 32⋅5⋅19
|
Sign: |
−0.0977+0.995i
|
Analytic conductor: |
6.82720 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ855(406,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 855, ( :1/2), −0.0977+0.995i)
|
Particular Values
L(1) |
≈ |
1.11763−1.23277i |
L(21) |
≈ |
1.11763−1.23277i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
| 19 | 1+(−4−1.73i)T |
good | 2 | 1+(0.207+0.358i)T+(−1+1.73i)T2 |
| 7 | 1−1.82T+7T2 |
| 11 | 1−2.82T+11T2 |
| 13 | 1+(−0.914+1.58i)T+(−6.5−11.2i)T2 |
| 17 | 1+(0.585+1.01i)T+(−8.5+14.7i)T2 |
| 23 | 1+(0.414−0.717i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.82+8.36i)T+(−14.5−25.1i)T2 |
| 31 | 1+5T+31T2 |
| 37 | 1+2.17T+37T2 |
| 41 | 1+(−1.41−2.44i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.91+6.77i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.58−2.74i)T+(−23.5−40.7i)T2 |
| 53 | 1+(1−1.73i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(−4.15+7.19i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.74−4.75i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−5−8.66i)T+(−35.5+61.4i)T2 |
| 73 | 1+(4.74+8.21i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−1.67−2.89i)T+(−39.5+68.4i)T2 |
| 83 | 1−8T+83T2 |
| 89 | 1+(−6.24+10.8i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3−5.19i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.947722280057485080315481949949, −9.258567081997665989987758629663, −8.326299055699953988930225555920, −7.44159217249037496392029981502, −6.40476831805804803909153137550, −5.55215288811809189456164127551, −4.66718936476540772382927057986, −3.43197614292778025536600580339, −1.99465804068466328322066550493, −0.918218696833690515175329225242,
1.65939686926094256625508042628, 3.05356233117805522530622085727, 3.92471164930328643949208812155, 5.07077938489908334972766734758, 6.40437767461734359444151609195, 6.98640162379484144943588917881, 7.81120901884500628590531389722, 8.639325829248419407696360072546, 9.307887442883313096730002718773, 10.59086765557681449112254109521