L(s) = 1 | − 2-s + 4-s − 2.69·7-s − 8-s − 5.54·11-s − 2.91·13-s + 2.69·14-s + 16-s − 4.91·17-s + 19-s + 5.54·22-s − 3.60·23-s + 2.91·26-s − 2.69·28-s − 1.08·29-s + 7.54·31-s − 32-s + 4.91·34-s + 4.54·37-s − 38-s − 9.54·43-s − 5.54·44-s + 3.60·46-s + 0.836·47-s + 0.245·49-s − 2.91·52-s − 9.78·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 1.01·7-s − 0.353·8-s − 1.67·11-s − 0.809·13-s + 0.719·14-s + 0.250·16-s − 1.19·17-s + 0.229·19-s + 1.18·22-s − 0.752·23-s + 0.572·26-s − 0.508·28-s − 0.200·29-s + 1.35·31-s − 0.176·32-s + 0.843·34-s + 0.747·37-s − 0.162·38-s − 1.45·43-s − 0.836·44-s + 0.532·46-s + 0.122·47-s + 0.0350·49-s − 0.404·52-s − 1.34·53-s + ⋯ |
Λ(s)=(=(8550s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8550s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2169151082 |
L(21) |
≈ |
0.2169151082 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 7 | 1+2.69T+7T2 |
| 11 | 1+5.54T+11T2 |
| 13 | 1+2.91T+13T2 |
| 17 | 1+4.91T+17T2 |
| 23 | 1+3.60T+23T2 |
| 29 | 1+1.08T+29T2 |
| 31 | 1−7.54T+31T2 |
| 37 | 1−4.54T+37T2 |
| 41 | 1+41T2 |
| 43 | 1+9.54T+43T2 |
| 47 | 1−0.836T+47T2 |
| 53 | 1+9.78T+53T2 |
| 59 | 1+12.9T+59T2 |
| 61 | 1+7.38T+61T2 |
| 67 | 1−2.85T+67T2 |
| 71 | 1+14.4T+71T2 |
| 73 | 1−5.15T+73T2 |
| 79 | 1+3.09T+79T2 |
| 83 | 1+1.71T+83T2 |
| 89 | 1−5.09T+89T2 |
| 97 | 1+17.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.933205542071202177401316833786, −7.16164643299102277471802509098, −6.49546702654402310999984706128, −5.91989154704053771698240690137, −5.00184010162464656513853689742, −4.34745191904989399585305937749, −3.04932136079510884204164235486, −2.73467663422044861728572007819, −1.78326952862109232266535767008, −0.23599053022095932960090973057,
0.23599053022095932960090973057, 1.78326952862109232266535767008, 2.73467663422044861728572007819, 3.04932136079510884204164235486, 4.34745191904989399585305937749, 5.00184010162464656513853689742, 5.91989154704053771698240690137, 6.49546702654402310999984706128, 7.16164643299102277471802509098, 7.933205542071202177401316833786