L(s) = 1 | + 2-s + 4-s − 1.03·7-s + 8-s + 3.86·11-s + 1.03·13-s − 1.03·14-s + 16-s − 7.46·17-s − 19-s + 3.86·22-s + 1.46·23-s + 1.03·26-s − 1.03·28-s − 9.52·29-s + 2.92·31-s + 32-s − 7.46·34-s − 6.69·37-s − 38-s − 6.69·41-s − 1.79·43-s + 3.86·44-s + 1.46·46-s − 9.46·47-s − 5.92·49-s + 1.03·52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 0.391·7-s + 0.353·8-s + 1.16·11-s + 0.287·13-s − 0.276·14-s + 0.250·16-s − 1.81·17-s − 0.229·19-s + 0.823·22-s + 0.305·23-s + 0.203·26-s − 0.195·28-s − 1.76·29-s + 0.525·31-s + 0.176·32-s − 1.28·34-s − 1.10·37-s − 0.162·38-s − 1.04·41-s − 0.273·43-s + 0.582·44-s + 0.215·46-s − 1.38·47-s − 0.846·49-s + 0.143·52-s + ⋯ |
Λ(s)=(=(8550s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8550s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 7 | 1+1.03T+7T2 |
| 11 | 1−3.86T+11T2 |
| 13 | 1−1.03T+13T2 |
| 17 | 1+7.46T+17T2 |
| 23 | 1−1.46T+23T2 |
| 29 | 1+9.52T+29T2 |
| 31 | 1−2.92T+31T2 |
| 37 | 1+6.69T+37T2 |
| 41 | 1+6.69T+41T2 |
| 43 | 1+1.79T+43T2 |
| 47 | 1+9.46T+47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1−12.6T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−3.58T+67T2 |
| 71 | 1−15.4T+71T2 |
| 73 | 1+13.3T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−4.39T+83T2 |
| 89 | 1+1.03T+89T2 |
| 97 | 1−17.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.06803821910788384113658907932, −6.67045166744698232027563618257, −6.21144673719911554374151535173, −5.26636700491076218577964732557, −4.59711051783282614574722854794, −3.81895567213535687052661989691, −3.33949799656411431151792646017, −2.21257853026140678874406563119, −1.52380750299865813559141647063, 0,
1.52380750299865813559141647063, 2.21257853026140678874406563119, 3.33949799656411431151792646017, 3.81895567213535687052661989691, 4.59711051783282614574722854794, 5.26636700491076218577964732557, 6.21144673719911554374151535173, 6.67045166744698232027563618257, 7.06803821910788384113658907932