Properties

Label 2-85e2-1.1-c1-0-101
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 7-s − 3·8-s − 2·9-s + 4·11-s − 12-s − 13-s − 14-s − 16-s − 2·18-s − 6·19-s − 21-s + 4·22-s − 3·24-s − 26-s − 5·27-s + 28-s + 7·31-s + 5·32-s + 4·33-s + 2·36-s + 4·37-s − 6·38-s − 39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 0.377·7-s − 1.06·8-s − 2/3·9-s + 1.20·11-s − 0.288·12-s − 0.277·13-s − 0.267·14-s − 1/4·16-s − 0.471·18-s − 1.37·19-s − 0.218·21-s + 0.852·22-s − 0.612·24-s − 0.196·26-s − 0.962·27-s + 0.188·28-s + 1.25·31-s + 0.883·32-s + 0.696·33-s + 1/3·36-s + 0.657·37-s − 0.973·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.226693672\)
\(L(\frac12)\) \(\approx\) \(2.226693672\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \)
3 \( 1 - T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 7 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 11 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.137336175370570455158370286211, −7.11506758484051445834837725606, −6.18382323461402075157966073920, −6.03879953647401353841158787955, −4.88611047485524815987471444871, −4.28031132843975574213598865876, −3.62547166449923999392099280690, −2.92386518865550189156320772474, −2.10237647492739208778648010240, −0.64079892155178707280465812390, 0.64079892155178707280465812390, 2.10237647492739208778648010240, 2.92386518865550189156320772474, 3.62547166449923999392099280690, 4.28031132843975574213598865876, 4.88611047485524815987471444871, 6.03879953647401353841158787955, 6.18382323461402075157966073920, 7.11506758484051445834837725606, 8.137336175370570455158370286211

Graph of the $Z$-function along the critical line