Properties

Label 2-85e2-1.1-c1-0-111
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.30·2-s + 0.334·3-s − 0.302·4-s + 0.436·6-s + 3.90·7-s − 2.99·8-s − 2.88·9-s − 0.135·11-s − 0.101·12-s − 6.65·13-s + 5.08·14-s − 3.30·16-s − 3.76·18-s − 5.16·19-s + 1.30·21-s − 0.176·22-s + 4.32·23-s − 1.00·24-s − 8.67·26-s − 1.97·27-s − 1.18·28-s − 2.14·29-s + 8.61·31-s + 1.69·32-s − 0.0453·33-s + 0.873·36-s + 0.234·37-s + ⋯
L(s)  = 1  + 0.921·2-s + 0.193·3-s − 0.151·4-s + 0.178·6-s + 1.47·7-s − 1.06·8-s − 0.962·9-s − 0.0408·11-s − 0.0292·12-s − 1.84·13-s + 1.35·14-s − 0.825·16-s − 0.886·18-s − 1.18·19-s + 0.285·21-s − 0.0376·22-s + 0.901·23-s − 0.204·24-s − 1.70·26-s − 0.379·27-s − 0.223·28-s − 0.398·29-s + 1.54·31-s + 0.299·32-s − 0.00789·33-s + 0.145·36-s + 0.0385·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.571378693\)
\(L(\frac12)\) \(\approx\) \(2.571378693\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - 1.30T + 2T^{2} \)
3 \( 1 - 0.334T + 3T^{2} \)
7 \( 1 - 3.90T + 7T^{2} \)
11 \( 1 + 0.135T + 11T^{2} \)
13 \( 1 + 6.65T + 13T^{2} \)
19 \( 1 + 5.16T + 19T^{2} \)
23 \( 1 - 4.32T + 23T^{2} \)
29 \( 1 + 2.14T + 29T^{2} \)
31 \( 1 - 8.61T + 31T^{2} \)
37 \( 1 - 0.234T + 37T^{2} \)
41 \( 1 - 8.34T + 41T^{2} \)
43 \( 1 - 1.89T + 43T^{2} \)
47 \( 1 - 9.86T + 47T^{2} \)
53 \( 1 - 1.42T + 53T^{2} \)
59 \( 1 + 3.61T + 59T^{2} \)
61 \( 1 - 5.46T + 61T^{2} \)
67 \( 1 - 8.10T + 67T^{2} \)
71 \( 1 - 10.4T + 71T^{2} \)
73 \( 1 - 1.26T + 73T^{2} \)
79 \( 1 - 12.1T + 79T^{2} \)
83 \( 1 - 1.43T + 83T^{2} \)
89 \( 1 + 4.30T + 89T^{2} \)
97 \( 1 + 0.473T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.966728621024898697513123689607, −7.25875699376531620879299883270, −6.32363734023026436246715301019, −5.55693312709260858433327089189, −4.91031319722251061385475076273, −4.59421317548806032145256235744, −3.73981605282311589289469828327, −2.53247656946161313461513806648, −2.35417698448044852656091346311, −0.67362848496811495240874602182, 0.67362848496811495240874602182, 2.35417698448044852656091346311, 2.53247656946161313461513806648, 3.73981605282311589289469828327, 4.59421317548806032145256235744, 4.91031319722251061385475076273, 5.55693312709260858433327089189, 6.32363734023026436246715301019, 7.25875699376531620879299883270, 7.966728621024898697513123689607

Graph of the $Z$-function along the critical line