L(s) = 1 | + 1.57·2-s − 2.87·3-s + 0.494·4-s − 4.53·6-s − 1.42·7-s − 2.37·8-s + 5.24·9-s − 0.0740·11-s − 1.42·12-s − 5.70·13-s − 2.24·14-s − 4.74·16-s + 8.29·18-s − 4.90·19-s + 4.08·21-s − 0.116·22-s − 3.88·23-s + 6.82·24-s − 9.00·26-s − 6.46·27-s − 0.702·28-s − 5.91·29-s − 0.388·31-s − 2.73·32-s + 0.212·33-s + 2.59·36-s − 9.91·37-s + ⋯ |
L(s) = 1 | + 1.11·2-s − 1.65·3-s + 0.247·4-s − 1.85·6-s − 0.536·7-s − 0.840·8-s + 1.74·9-s − 0.0223·11-s − 0.410·12-s − 1.58·13-s − 0.599·14-s − 1.18·16-s + 1.95·18-s − 1.12·19-s + 0.890·21-s − 0.0249·22-s − 0.809·23-s + 1.39·24-s − 1.76·26-s − 1.24·27-s − 0.132·28-s − 1.09·29-s − 0.0697·31-s − 0.484·32-s + 0.0370·33-s + 0.432·36-s − 1.62·37-s + ⋯ |
Λ(s)=(=(7225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2155899813 |
L(21) |
≈ |
0.2155899813 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1−1.57T+2T2 |
| 3 | 1+2.87T+3T2 |
| 7 | 1+1.42T+7T2 |
| 11 | 1+0.0740T+11T2 |
| 13 | 1+5.70T+13T2 |
| 19 | 1+4.90T+19T2 |
| 23 | 1+3.88T+23T2 |
| 29 | 1+5.91T+29T2 |
| 31 | 1+0.388T+31T2 |
| 37 | 1+9.91T+37T2 |
| 41 | 1−6.61T+41T2 |
| 43 | 1−6.94T+43T2 |
| 47 | 1+5.70T+47T2 |
| 53 | 1+0.0216T+53T2 |
| 59 | 1+2T+59T2 |
| 61 | 1−3.47T+61T2 |
| 67 | 1+6.71T+67T2 |
| 71 | 1+3.84T+71T2 |
| 73 | 1+13.5T+73T2 |
| 79 | 1−1.05T+79T2 |
| 83 | 1+11.8T+83T2 |
| 89 | 1+1.99T+89T2 |
| 97 | 1+5.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.47502191902226990355002726052, −6.93565405947524067888264592973, −6.18329957080066967936330491918, −5.77471836637819899294204594838, −5.11302811207022178907863060787, −4.50866565558689902509461754978, −3.95701940656231920615422188950, −2.89678617273194153296097916513, −1.88918383316780615893028055169, −0.20311218518310464062935841382,
0.20311218518310464062935841382, 1.88918383316780615893028055169, 2.89678617273194153296097916513, 3.95701940656231920615422188950, 4.50866565558689902509461754978, 5.11302811207022178907863060787, 5.77471836637819899294204594838, 6.18329957080066967936330491918, 6.93565405947524067888264592973, 7.47502191902226990355002726052