Properties

Label 2-85e2-1.1-c1-0-141
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.22·2-s − 2.38·3-s − 0.511·4-s − 2.91·6-s + 1.22·7-s − 3.06·8-s + 2.69·9-s + 5.09·11-s + 1.22·12-s + 2.60·13-s + 1.48·14-s − 2.71·16-s + 3.28·18-s + 8.51·19-s − 2.91·21-s + 6.21·22-s − 2.89·23-s + 7.31·24-s + 3.18·26-s + 0.732·27-s − 0.623·28-s + 5.49·29-s + 3.18·31-s + 2.81·32-s − 12.1·33-s − 1.37·36-s + 3.09·37-s + ⋯
L(s)  = 1  + 0.862·2-s − 1.37·3-s − 0.255·4-s − 1.18·6-s + 0.461·7-s − 1.08·8-s + 0.897·9-s + 1.53·11-s + 0.352·12-s + 0.723·13-s + 0.397·14-s − 0.678·16-s + 0.774·18-s + 1.95·19-s − 0.635·21-s + 1.32·22-s − 0.603·23-s + 1.49·24-s + 0.623·26-s + 0.140·27-s − 0.117·28-s + 1.01·29-s + 0.571·31-s + 0.497·32-s − 2.11·33-s − 0.229·36-s + 0.508·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.980703870\)
\(L(\frac12)\) \(\approx\) \(1.980703870\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - 1.22T + 2T^{2} \)
3 \( 1 + 2.38T + 3T^{2} \)
7 \( 1 - 1.22T + 7T^{2} \)
11 \( 1 - 5.09T + 11T^{2} \)
13 \( 1 - 2.60T + 13T^{2} \)
19 \( 1 - 8.51T + 19T^{2} \)
23 \( 1 + 2.89T + 23T^{2} \)
29 \( 1 - 5.49T + 29T^{2} \)
31 \( 1 - 3.18T + 31T^{2} \)
37 \( 1 - 3.09T + 37T^{2} \)
41 \( 1 + 0.181T + 41T^{2} \)
43 \( 1 + 6.70T + 43T^{2} \)
47 \( 1 + 8.71T + 47T^{2} \)
53 \( 1 - 0.167T + 53T^{2} \)
59 \( 1 + 13.7T + 59T^{2} \)
61 \( 1 - 0.293T + 61T^{2} \)
67 \( 1 + 1.56T + 67T^{2} \)
71 \( 1 - 6.93T + 71T^{2} \)
73 \( 1 - 8.04T + 73T^{2} \)
79 \( 1 + 0.0888T + 79T^{2} \)
83 \( 1 - 14.8T + 83T^{2} \)
89 \( 1 + 2.79T + 89T^{2} \)
97 \( 1 - 3.54T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87426307546264987740899511404, −6.73148502149467945532010113634, −6.33969525647206687883409990802, −5.79467782302637750941248046226, −4.95793909633553683690286215767, −4.66419318917752446092193352069, −3.72767532685911194390368713903, −3.11705478731126791805328075115, −1.49949089497666042379444493184, −0.74497121649527636883217597998, 0.74497121649527636883217597998, 1.49949089497666042379444493184, 3.11705478731126791805328075115, 3.72767532685911194390368713903, 4.66419318917752446092193352069, 4.95793909633553683690286215767, 5.79467782302637750941248046226, 6.33969525647206687883409990802, 6.73148502149467945532010113634, 7.87426307546264987740899511404

Graph of the $Z$-function along the critical line