Properties

Label 2-85e2-1.1-c1-0-197
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.232·2-s + 2.39·3-s − 1.94·4-s − 0.556·6-s + 2.06·7-s + 0.917·8-s + 2.73·9-s − 0.480·11-s − 4.65·12-s + 4.07·13-s − 0.480·14-s + 3.67·16-s − 0.635·18-s + 4·19-s + 4.94·21-s + 0.111·22-s + 8.15·23-s + 2.19·24-s − 0.945·26-s − 0.639·27-s − 4.01·28-s + 1.03·29-s − 6.06·31-s − 2.68·32-s − 1.14·33-s − 5.31·36-s − 1.29·37-s + ⋯
L(s)  = 1  − 0.164·2-s + 1.38·3-s − 0.972·4-s − 0.227·6-s + 0.780·7-s + 0.324·8-s + 0.910·9-s − 0.144·11-s − 1.34·12-s + 1.12·13-s − 0.128·14-s + 0.919·16-s − 0.149·18-s + 0.917·19-s + 1.07·21-s + 0.0237·22-s + 1.69·23-s + 0.448·24-s − 0.185·26-s − 0.123·27-s − 0.759·28-s + 0.192·29-s − 1.08·31-s − 0.475·32-s − 0.200·33-s − 0.886·36-s − 0.213·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.131623170\)
\(L(\frac12)\) \(\approx\) \(3.131623170\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 + 0.232T + 2T^{2} \)
3 \( 1 - 2.39T + 3T^{2} \)
7 \( 1 - 2.06T + 7T^{2} \)
11 \( 1 + 0.480T + 11T^{2} \)
13 \( 1 - 4.07T + 13T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 8.15T + 23T^{2} \)
29 \( 1 - 1.03T + 29T^{2} \)
31 \( 1 + 6.06T + 31T^{2} \)
37 \( 1 + 1.29T + 37T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 - 7.45T + 43T^{2} \)
47 \( 1 - 3.60T + 47T^{2} \)
53 \( 1 - 6.14T + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 - 5.65T + 61T^{2} \)
67 \( 1 - 3.14T + 67T^{2} \)
71 \( 1 - 1.81T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 + 10.2T + 79T^{2} \)
83 \( 1 - 2.23T + 83T^{2} \)
89 \( 1 + 9.37T + 89T^{2} \)
97 \( 1 - 16.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.124998203335730989706285835355, −7.51879953226705497920467549584, −6.80761363807194361021179669988, −5.49279143124513870332506981587, −5.13673637495466171450195944502, −4.10335319816158367025544986985, −3.57299561399284352987985704073, −2.85680652098296835249477672726, −1.73743215092382650266916465921, −0.935498091043930806611411516855, 0.935498091043930806611411516855, 1.73743215092382650266916465921, 2.85680652098296835249477672726, 3.57299561399284352987985704073, 4.10335319816158367025544986985, 5.13673637495466171450195944502, 5.49279143124513870332506981587, 6.80761363807194361021179669988, 7.51879953226705497920467549584, 8.124998203335730989706285835355

Graph of the $Z$-function along the critical line