L(s) = 1 | − 2-s + 2.62·3-s + 4-s + 2.00·5-s − 2.62·6-s + 0.373·7-s − 8-s + 3.90·9-s − 2.00·10-s − 1.73·11-s + 2.62·12-s − 1.83·13-s − 0.373·14-s + 5.27·15-s + 16-s − 1.21·17-s − 3.90·18-s + 7.37·19-s + 2.00·20-s + 0.982·21-s + 1.73·22-s + 8.08·23-s − 2.62·24-s − 0.964·25-s + 1.83·26-s + 2.38·27-s + 0.373·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.51·3-s + 0.5·4-s + 0.898·5-s − 1.07·6-s + 0.141·7-s − 0.353·8-s + 1.30·9-s − 0.635·10-s − 0.521·11-s + 0.758·12-s − 0.509·13-s − 0.0998·14-s + 1.36·15-s + 0.250·16-s − 0.294·17-s − 0.920·18-s + 1.69·19-s + 0.449·20-s + 0.214·21-s + 0.368·22-s + 1.68·23-s − 0.536·24-s − 0.192·25-s + 0.360·26-s + 0.458·27-s + 0.0706·28-s + ⋯ |
Λ(s)=(=(862s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(862s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.213898260 |
L(21) |
≈ |
2.213898260 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 431 | 1−T |
good | 3 | 1−2.62T+3T2 |
| 5 | 1−2.00T+5T2 |
| 7 | 1−0.373T+7T2 |
| 11 | 1+1.73T+11T2 |
| 13 | 1+1.83T+13T2 |
| 17 | 1+1.21T+17T2 |
| 19 | 1−7.37T+19T2 |
| 23 | 1−8.08T+23T2 |
| 29 | 1−7.03T+29T2 |
| 31 | 1+8.79T+31T2 |
| 37 | 1+2.45T+37T2 |
| 41 | 1−2.74T+41T2 |
| 43 | 1−12.4T+43T2 |
| 47 | 1+2.86T+47T2 |
| 53 | 1+2.22T+53T2 |
| 59 | 1+7.28T+59T2 |
| 61 | 1−3.58T+61T2 |
| 67 | 1+8.67T+67T2 |
| 71 | 1+9.48T+71T2 |
| 73 | 1+13.2T+73T2 |
| 79 | 1+14.9T+79T2 |
| 83 | 1+4.24T+83T2 |
| 89 | 1−17.4T+89T2 |
| 97 | 1−12.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.854246965441506830803815933455, −9.197747254150742202007951592306, −8.771025305030022562433349747209, −7.57881940742678820891137873325, −7.29919410717147803557767005143, −5.89444662565118889181734491441, −4.82618173131407098069204345582, −3.22785802056232158671060587440, −2.57731636585566383061267853511, −1.46832194973399051293646783991,
1.46832194973399051293646783991, 2.57731636585566383061267853511, 3.22785802056232158671060587440, 4.82618173131407098069204345582, 5.89444662565118889181734491441, 7.29919410717147803557767005143, 7.57881940742678820891137873325, 8.771025305030022562433349747209, 9.197747254150742202007951592306, 9.854246965441506830803815933455