Properties

Label 2-862-1.1-c1-0-13
Degree $2$
Conductor $862$
Sign $1$
Analytic cond. $6.88310$
Root an. cond. $2.62356$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.62·3-s + 4-s + 2.00·5-s − 2.62·6-s + 0.373·7-s − 8-s + 3.90·9-s − 2.00·10-s − 1.73·11-s + 2.62·12-s − 1.83·13-s − 0.373·14-s + 5.27·15-s + 16-s − 1.21·17-s − 3.90·18-s + 7.37·19-s + 2.00·20-s + 0.982·21-s + 1.73·22-s + 8.08·23-s − 2.62·24-s − 0.964·25-s + 1.83·26-s + 2.38·27-s + 0.373·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.51·3-s + 0.5·4-s + 0.898·5-s − 1.07·6-s + 0.141·7-s − 0.353·8-s + 1.30·9-s − 0.635·10-s − 0.521·11-s + 0.758·12-s − 0.509·13-s − 0.0998·14-s + 1.36·15-s + 0.250·16-s − 0.294·17-s − 0.920·18-s + 1.69·19-s + 0.449·20-s + 0.214·21-s + 0.368·22-s + 1.68·23-s − 0.536·24-s − 0.192·25-s + 0.360·26-s + 0.458·27-s + 0.0706·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(862\)    =    \(2 \cdot 431\)
Sign: $1$
Analytic conductor: \(6.88310\)
Root analytic conductor: \(2.62356\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 862,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.213898260\)
\(L(\frac12)\) \(\approx\) \(2.213898260\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
431 \( 1 - T \)
good3 \( 1 - 2.62T + 3T^{2} \)
5 \( 1 - 2.00T + 5T^{2} \)
7 \( 1 - 0.373T + 7T^{2} \)
11 \( 1 + 1.73T + 11T^{2} \)
13 \( 1 + 1.83T + 13T^{2} \)
17 \( 1 + 1.21T + 17T^{2} \)
19 \( 1 - 7.37T + 19T^{2} \)
23 \( 1 - 8.08T + 23T^{2} \)
29 \( 1 - 7.03T + 29T^{2} \)
31 \( 1 + 8.79T + 31T^{2} \)
37 \( 1 + 2.45T + 37T^{2} \)
41 \( 1 - 2.74T + 41T^{2} \)
43 \( 1 - 12.4T + 43T^{2} \)
47 \( 1 + 2.86T + 47T^{2} \)
53 \( 1 + 2.22T + 53T^{2} \)
59 \( 1 + 7.28T + 59T^{2} \)
61 \( 1 - 3.58T + 61T^{2} \)
67 \( 1 + 8.67T + 67T^{2} \)
71 \( 1 + 9.48T + 71T^{2} \)
73 \( 1 + 13.2T + 73T^{2} \)
79 \( 1 + 14.9T + 79T^{2} \)
83 \( 1 + 4.24T + 83T^{2} \)
89 \( 1 - 17.4T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.854246965441506830803815933455, −9.197747254150742202007951592306, −8.771025305030022562433349747209, −7.57881940742678820891137873325, −7.29919410717147803557767005143, −5.89444662565118889181734491441, −4.82618173131407098069204345582, −3.22785802056232158671060587440, −2.57731636585566383061267853511, −1.46832194973399051293646783991, 1.46832194973399051293646783991, 2.57731636585566383061267853511, 3.22785802056232158671060587440, 4.82618173131407098069204345582, 5.89444662565118889181734491441, 7.29919410717147803557767005143, 7.57881940742678820891137873325, 8.771025305030022562433349747209, 9.197747254150742202007951592306, 9.854246965441506830803815933455

Graph of the $Z$-function along the critical line