L(s) = 1 | − 2-s − 0.705·3-s + 4-s + 0.580·5-s + 0.705·6-s − 4.68·7-s − 8-s − 2.50·9-s − 0.580·10-s − 4.95·11-s − 0.705·12-s + 1.86·13-s + 4.68·14-s − 0.409·15-s + 16-s + 6.13·17-s + 2.50·18-s + 5.02·19-s + 0.580·20-s + 3.30·21-s + 4.95·22-s + 1.58·23-s + 0.705·24-s − 4.66·25-s − 1.86·26-s + 3.88·27-s − 4.68·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.407·3-s + 0.5·4-s + 0.259·5-s + 0.287·6-s − 1.77·7-s − 0.353·8-s − 0.834·9-s − 0.183·10-s − 1.49·11-s − 0.203·12-s + 0.515·13-s + 1.25·14-s − 0.105·15-s + 0.250·16-s + 1.48·17-s + 0.589·18-s + 1.15·19-s + 0.129·20-s + 0.721·21-s + 1.05·22-s + 0.330·23-s + 0.143·24-s − 0.932·25-s − 0.364·26-s + 0.746·27-s − 0.885·28-s + ⋯ |
Λ(s)=(=(862s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(862s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6347434477 |
L(21) |
≈ |
0.6347434477 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 431 | 1−T |
good | 3 | 1+0.705T+3T2 |
| 5 | 1−0.580T+5T2 |
| 7 | 1+4.68T+7T2 |
| 11 | 1+4.95T+11T2 |
| 13 | 1−1.86T+13T2 |
| 17 | 1−6.13T+17T2 |
| 19 | 1−5.02T+19T2 |
| 23 | 1−1.58T+23T2 |
| 29 | 1−10.7T+29T2 |
| 31 | 1−4.46T+31T2 |
| 37 | 1−5.89T+37T2 |
| 41 | 1+10.5T+41T2 |
| 43 | 1+4.45T+43T2 |
| 47 | 1−0.121T+47T2 |
| 53 | 1−13.5T+53T2 |
| 59 | 1+11.4T+59T2 |
| 61 | 1+3.30T+61T2 |
| 67 | 1−0.357T+67T2 |
| 71 | 1−5.06T+71T2 |
| 73 | 1+1.97T+73T2 |
| 79 | 1+2.37T+79T2 |
| 83 | 1−15.4T+83T2 |
| 89 | 1−10.1T+89T2 |
| 97 | 1+2.76T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09305017133137957179507555355, −9.581974918194055275186273259019, −8.472388505733419348611063415350, −7.73868174526617357018100207316, −6.64133837541557826828257554048, −5.92953068727667598029361917153, −5.22547004904049135923894834855, −3.26697712106623518898772594406, −2.79552848452139372375724727939, −0.69731509541020513539611564516,
0.69731509541020513539611564516, 2.79552848452139372375724727939, 3.26697712106623518898772594406, 5.22547004904049135923894834855, 5.92953068727667598029361917153, 6.64133837541557826828257554048, 7.73868174526617357018100207316, 8.472388505733419348611063415350, 9.581974918194055275186273259019, 10.09305017133137957179507555355