Properties

Label 2-862-1.1-c1-0-2
Degree $2$
Conductor $862$
Sign $1$
Analytic cond. $6.88310$
Root an. cond. $2.62356$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 0.705·3-s + 4-s + 0.580·5-s + 0.705·6-s − 4.68·7-s − 8-s − 2.50·9-s − 0.580·10-s − 4.95·11-s − 0.705·12-s + 1.86·13-s + 4.68·14-s − 0.409·15-s + 16-s + 6.13·17-s + 2.50·18-s + 5.02·19-s + 0.580·20-s + 3.30·21-s + 4.95·22-s + 1.58·23-s + 0.705·24-s − 4.66·25-s − 1.86·26-s + 3.88·27-s − 4.68·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.407·3-s + 0.5·4-s + 0.259·5-s + 0.287·6-s − 1.77·7-s − 0.353·8-s − 0.834·9-s − 0.183·10-s − 1.49·11-s − 0.203·12-s + 0.515·13-s + 1.25·14-s − 0.105·15-s + 0.250·16-s + 1.48·17-s + 0.589·18-s + 1.15·19-s + 0.129·20-s + 0.721·21-s + 1.05·22-s + 0.330·23-s + 0.143·24-s − 0.932·25-s − 0.364·26-s + 0.746·27-s − 0.885·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(862\)    =    \(2 \cdot 431\)
Sign: $1$
Analytic conductor: \(6.88310\)
Root analytic conductor: \(2.62356\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 862,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6347434477\)
\(L(\frac12)\) \(\approx\) \(0.6347434477\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
431 \( 1 - T \)
good3 \( 1 + 0.705T + 3T^{2} \)
5 \( 1 - 0.580T + 5T^{2} \)
7 \( 1 + 4.68T + 7T^{2} \)
11 \( 1 + 4.95T + 11T^{2} \)
13 \( 1 - 1.86T + 13T^{2} \)
17 \( 1 - 6.13T + 17T^{2} \)
19 \( 1 - 5.02T + 19T^{2} \)
23 \( 1 - 1.58T + 23T^{2} \)
29 \( 1 - 10.7T + 29T^{2} \)
31 \( 1 - 4.46T + 31T^{2} \)
37 \( 1 - 5.89T + 37T^{2} \)
41 \( 1 + 10.5T + 41T^{2} \)
43 \( 1 + 4.45T + 43T^{2} \)
47 \( 1 - 0.121T + 47T^{2} \)
53 \( 1 - 13.5T + 53T^{2} \)
59 \( 1 + 11.4T + 59T^{2} \)
61 \( 1 + 3.30T + 61T^{2} \)
67 \( 1 - 0.357T + 67T^{2} \)
71 \( 1 - 5.06T + 71T^{2} \)
73 \( 1 + 1.97T + 73T^{2} \)
79 \( 1 + 2.37T + 79T^{2} \)
83 \( 1 - 15.4T + 83T^{2} \)
89 \( 1 - 10.1T + 89T^{2} \)
97 \( 1 + 2.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09305017133137957179507555355, −9.581974918194055275186273259019, −8.472388505733419348611063415350, −7.73868174526617357018100207316, −6.64133837541557826828257554048, −5.92953068727667598029361917153, −5.22547004904049135923894834855, −3.26697712106623518898772594406, −2.79552848452139372375724727939, −0.69731509541020513539611564516, 0.69731509541020513539611564516, 2.79552848452139372375724727939, 3.26697712106623518898772594406, 5.22547004904049135923894834855, 5.92953068727667598029361917153, 6.64133837541557826828257554048, 7.73868174526617357018100207316, 8.472388505733419348611063415350, 9.581974918194055275186273259019, 10.09305017133137957179507555355

Graph of the $Z$-function along the critical line