L(s) = 1 | − 2-s − 1.10·3-s + 4-s − 0.0681·5-s + 1.10·6-s + 2.43·7-s − 8-s − 1.78·9-s + 0.0681·10-s + 5.61·11-s − 1.10·12-s + 1.70·13-s − 2.43·14-s + 0.0751·15-s + 16-s − 3.58·17-s + 1.78·18-s − 4.83·19-s − 0.0681·20-s − 2.68·21-s − 5.61·22-s + 4.79·23-s + 1.10·24-s − 4.99·25-s − 1.70·26-s + 5.27·27-s + 2.43·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.637·3-s + 0.5·4-s − 0.0304·5-s + 0.450·6-s + 0.920·7-s − 0.353·8-s − 0.594·9-s + 0.0215·10-s + 1.69·11-s − 0.318·12-s + 0.471·13-s − 0.651·14-s + 0.0194·15-s + 0.250·16-s − 0.870·17-s + 0.420·18-s − 1.10·19-s − 0.0152·20-s − 0.586·21-s − 1.19·22-s + 0.999·23-s + 0.225·24-s − 0.999·25-s − 0.333·26-s + 1.01·27-s + 0.460·28-s + ⋯ |
Λ(s)=(=(862s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(862s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.001450891 |
L(21) |
≈ |
1.001450891 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 431 | 1−T |
good | 3 | 1+1.10T+3T2 |
| 5 | 1+0.0681T+5T2 |
| 7 | 1−2.43T+7T2 |
| 11 | 1−5.61T+11T2 |
| 13 | 1−1.70T+13T2 |
| 17 | 1+3.58T+17T2 |
| 19 | 1+4.83T+19T2 |
| 23 | 1−4.79T+23T2 |
| 29 | 1−3.94T+29T2 |
| 31 | 1−1.53T+31T2 |
| 37 | 1−3.27T+37T2 |
| 41 | 1−4.85T+41T2 |
| 43 | 1+4.76T+43T2 |
| 47 | 1−9.21T+47T2 |
| 53 | 1−12.7T+53T2 |
| 59 | 1+8.98T+59T2 |
| 61 | 1−12.9T+61T2 |
| 67 | 1+12.1T+67T2 |
| 71 | 1+1.99T+71T2 |
| 73 | 1−6.42T+73T2 |
| 79 | 1−6.23T+79T2 |
| 83 | 1−16.8T+83T2 |
| 89 | 1−9.89T+89T2 |
| 97 | 1−11.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33525570528387829556833574922, −8.936959347578442996907878887889, −8.827231399344623107919346487931, −7.71659126151810509269699017379, −6.56155370613151692581545383749, −6.13926162462006156762536054053, −4.86506488943449905879590807788, −3.87525105139685593427920287695, −2.24791839778951874881219456553, −0.963170104323067709732555299310,
0.963170104323067709732555299310, 2.24791839778951874881219456553, 3.87525105139685593427920287695, 4.86506488943449905879590807788, 6.13926162462006156762536054053, 6.56155370613151692581545383749, 7.71659126151810509269699017379, 8.827231399344623107919346487931, 8.936959347578442996907878887889, 10.33525570528387829556833574922