L(s) = 1 | − 2-s − 1.94·3-s + 4-s + 3.69·5-s + 1.94·6-s − 2.11·7-s − 8-s + 0.782·9-s − 3.69·10-s + 1.68·11-s − 1.94·12-s + 4.38·13-s + 2.11·14-s − 7.19·15-s + 16-s + 1.07·17-s − 0.782·18-s + 0.525·19-s + 3.69·20-s + 4.10·21-s − 1.68·22-s − 0.463·23-s + 1.94·24-s + 8.67·25-s − 4.38·26-s + 4.31·27-s − 2.11·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.12·3-s + 0.5·4-s + 1.65·5-s + 0.793·6-s − 0.797·7-s − 0.353·8-s + 0.260·9-s − 1.16·10-s + 0.506·11-s − 0.561·12-s + 1.21·13-s + 0.564·14-s − 1.85·15-s + 0.250·16-s + 0.259·17-s − 0.184·18-s + 0.120·19-s + 0.826·20-s + 0.895·21-s − 0.358·22-s − 0.0967·23-s + 0.396·24-s + 1.73·25-s − 0.859·26-s + 0.830·27-s − 0.398·28-s + ⋯ |
Λ(s)=(=(862s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(862s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9767215260 |
L(21) |
≈ |
0.9767215260 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 431 | 1−T |
good | 3 | 1+1.94T+3T2 |
| 5 | 1−3.69T+5T2 |
| 7 | 1+2.11T+7T2 |
| 11 | 1−1.68T+11T2 |
| 13 | 1−4.38T+13T2 |
| 17 | 1−1.07T+17T2 |
| 19 | 1−0.525T+19T2 |
| 23 | 1+0.463T+23T2 |
| 29 | 1+9.66T+29T2 |
| 31 | 1+9.57T+31T2 |
| 37 | 1−9.09T+37T2 |
| 41 | 1−8.45T+41T2 |
| 43 | 1−10.3T+43T2 |
| 47 | 1+3.30T+47T2 |
| 53 | 1−3.73T+53T2 |
| 59 | 1−6.67T+59T2 |
| 61 | 1−0.444T+61T2 |
| 67 | 1−13.2T+67T2 |
| 71 | 1−6.94T+71T2 |
| 73 | 1−2.36T+73T2 |
| 79 | 1+10.9T+79T2 |
| 83 | 1−8.78T+83T2 |
| 89 | 1−9.82T+89T2 |
| 97 | 1−8.50T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07821065773379726394383621695, −9.399244311390401173441220164486, −8.908602897429034142208258397766, −7.44970352868895002490540754243, −6.36332400333869620016754066348, −6.01050858668370635061648891260, −5.39848228313376513312921754988, −3.68029316881676265954060674277, −2.21953324977738327032463579201, −0.966330481356713775991703942349,
0.966330481356713775991703942349, 2.21953324977738327032463579201, 3.68029316881676265954060674277, 5.39848228313376513312921754988, 6.01050858668370635061648891260, 6.36332400333869620016754066348, 7.44970352868895002490540754243, 8.908602897429034142208258397766, 9.399244311390401173441220164486, 10.07821065773379726394383621695