Properties

Label 2-862-1.1-c1-0-7
Degree $2$
Conductor $862$
Sign $1$
Analytic cond. $6.88310$
Root an. cond. $2.62356$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.23·3-s + 4-s + 5-s − 2.23·6-s + 3.23·7-s + 8-s + 2.00·9-s + 10-s − 0.236·11-s − 2.23·12-s − 3.23·13-s + 3.23·14-s − 2.23·15-s + 16-s + 4.47·17-s + 2.00·18-s + 4.23·19-s + 20-s − 7.23·21-s − 0.236·22-s − 1.76·23-s − 2.23·24-s − 4·25-s − 3.23·26-s + 2.23·27-s + 3.23·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.29·3-s + 0.5·4-s + 0.447·5-s − 0.912·6-s + 1.22·7-s + 0.353·8-s + 0.666·9-s + 0.316·10-s − 0.0711·11-s − 0.645·12-s − 0.897·13-s + 0.864·14-s − 0.577·15-s + 0.250·16-s + 1.08·17-s + 0.471·18-s + 0.971·19-s + 0.223·20-s − 1.57·21-s − 0.0503·22-s − 0.367·23-s − 0.456·24-s − 0.800·25-s − 0.634·26-s + 0.430·27-s + 0.611·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(862\)    =    \(2 \cdot 431\)
Sign: $1$
Analytic conductor: \(6.88310\)
Root analytic conductor: \(2.62356\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 862,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.934419142\)
\(L(\frac12)\) \(\approx\) \(1.934419142\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
431 \( 1 + T \)
good3 \( 1 + 2.23T + 3T^{2} \)
5 \( 1 - T + 5T^{2} \)
7 \( 1 - 3.23T + 7T^{2} \)
11 \( 1 + 0.236T + 11T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
19 \( 1 - 4.23T + 19T^{2} \)
23 \( 1 + 1.76T + 23T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 - 3.23T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 - 1.47T + 53T^{2} \)
59 \( 1 - 11.1T + 59T^{2} \)
61 \( 1 - 4.47T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 - 2.76T + 71T^{2} \)
73 \( 1 + 6.47T + 73T^{2} \)
79 \( 1 + 7.52T + 79T^{2} \)
83 \( 1 - 8.47T + 83T^{2} \)
89 \( 1 + 4T + 89T^{2} \)
97 \( 1 + 5.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32481702134480335745756151991, −9.723605817208830015907629702348, −8.204352759652178116214598202661, −7.44953280414046437937874287737, −6.44116444032137020041614035301, −5.40668935333792939185731574652, −5.22964447690082351168695655388, −4.15617552990097400756556311261, −2.57529465246915388061748919956, −1.17917255355302963741113192973, 1.17917255355302963741113192973, 2.57529465246915388061748919956, 4.15617552990097400756556311261, 5.22964447690082351168695655388, 5.40668935333792939185731574652, 6.44116444032137020041614035301, 7.44953280414046437937874287737, 8.204352759652178116214598202661, 9.723605817208830015907629702348, 10.32481702134480335745756151991

Graph of the $Z$-function along the critical line