Properties

Label 2-8624-1.1-c1-0-135
Degree $2$
Conductor $8624$
Sign $-1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 9-s − 11-s − 2·13-s − 4·15-s − 2·19-s − 25-s + 4·27-s + 6·29-s + 4·31-s + 2·33-s + 2·37-s + 4·39-s − 8·41-s − 12·43-s + 2·45-s + 12·47-s − 2·53-s − 2·55-s + 4·57-s + 10·59-s + 10·61-s − 4·65-s + 12·67-s − 4·71-s − 12·73-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 1/3·9-s − 0.301·11-s − 0.554·13-s − 1.03·15-s − 0.458·19-s − 1/5·25-s + 0.769·27-s + 1.11·29-s + 0.718·31-s + 0.348·33-s + 0.328·37-s + 0.640·39-s − 1.24·41-s − 1.82·43-s + 0.298·45-s + 1.75·47-s − 0.274·53-s − 0.269·55-s + 0.529·57-s + 1.30·59-s + 1.28·61-s − 0.496·65-s + 1.46·67-s − 0.474·71-s − 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 12 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 18 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.12460300693083926763643198058, −6.62617679408616128843528252117, −6.01528735818747959290218806405, −5.36328973351482376314419255581, −4.92734604444592399564955127816, −4.07580840862266141599266673735, −2.89616711825603720890335339875, −2.17854992458334996126947913131, −1.11046195028346012436707118039, 0, 1.11046195028346012436707118039, 2.17854992458334996126947913131, 2.89616711825603720890335339875, 4.07580840862266141599266673735, 4.92734604444592399564955127816, 5.36328973351482376314419255581, 6.01528735818747959290218806405, 6.62617679408616128843528252117, 7.12460300693083926763643198058

Graph of the $Z$-function along the critical line