Properties

Label 2-867-1.1-c1-0-9
Degree $2$
Conductor $867$
Sign $1$
Analytic cond. $6.92302$
Root an. cond. $2.63116$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.222·2-s + 3-s − 1.95·4-s − 0.636·5-s + 0.222·6-s − 1.72·7-s − 0.877·8-s + 9-s − 0.141·10-s + 4.95·11-s − 1.95·12-s + 2.50·13-s − 0.384·14-s − 0.636·15-s + 3.70·16-s + 0.222·18-s − 0.950·19-s + 1.24·20-s − 1.72·21-s + 1.09·22-s − 2.12·23-s − 0.877·24-s − 4.59·25-s + 0.556·26-s + 27-s + 3.37·28-s + 9.58·29-s + ⋯
L(s)  = 1  + 0.157·2-s + 0.577·3-s − 0.975·4-s − 0.284·5-s + 0.0907·6-s − 0.653·7-s − 0.310·8-s + 0.333·9-s − 0.0447·10-s + 1.49·11-s − 0.563·12-s + 0.695·13-s − 0.102·14-s − 0.164·15-s + 0.926·16-s + 0.0523·18-s − 0.218·19-s + 0.277·20-s − 0.377·21-s + 0.234·22-s − 0.442·23-s − 0.179·24-s − 0.918·25-s + 0.109·26-s + 0.192·27-s + 0.637·28-s + 1.78·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(6.92302\)
Root analytic conductor: \(2.63116\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 867,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.601849450\)
\(L(\frac12)\) \(\approx\) \(1.601849450\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 0.222T + 2T^{2} \)
5 \( 1 + 0.636T + 5T^{2} \)
7 \( 1 + 1.72T + 7T^{2} \)
11 \( 1 - 4.95T + 11T^{2} \)
13 \( 1 - 2.50T + 13T^{2} \)
19 \( 1 + 0.950T + 19T^{2} \)
23 \( 1 + 2.12T + 23T^{2} \)
29 \( 1 - 9.58T + 29T^{2} \)
31 \( 1 - 5.27T + 31T^{2} \)
37 \( 1 - 8.48T + 37T^{2} \)
41 \( 1 - 6.92T + 41T^{2} \)
43 \( 1 - 7.15T + 43T^{2} \)
47 \( 1 - 8.10T + 47T^{2} \)
53 \( 1 + 6.44T + 53T^{2} \)
59 \( 1 + 10.1T + 59T^{2} \)
61 \( 1 - 2.96T + 61T^{2} \)
67 \( 1 - 7.70T + 67T^{2} \)
71 \( 1 + 0.384T + 71T^{2} \)
73 \( 1 - 6.51T + 73T^{2} \)
79 \( 1 + 2.37T + 79T^{2} \)
83 \( 1 + 13.3T + 83T^{2} \)
89 \( 1 + 1.98T + 89T^{2} \)
97 \( 1 - 3.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.764464811886636511142975033575, −9.396628236284825040726095301219, −8.529264463988429356438407167125, −7.87761658656161682931531229925, −6.56691151042302356558644670277, −5.93932232992331387427846798535, −4.35454511804715088539774576545, −3.98666856142688385078573779875, −2.88260412275820003463458089772, −1.03989225069973365425781144792, 1.03989225069973365425781144792, 2.88260412275820003463458089772, 3.98666856142688385078573779875, 4.35454511804715088539774576545, 5.93932232992331387427846798535, 6.56691151042302356558644670277, 7.87761658656161682931531229925, 8.529264463988429356438407167125, 9.396628236284825040726095301219, 9.764464811886636511142975033575

Graph of the $Z$-function along the critical line