L(s) = 1 | + 0.222·2-s + 3-s − 1.95·4-s − 0.636·5-s + 0.222·6-s − 1.72·7-s − 0.877·8-s + 9-s − 0.141·10-s + 4.95·11-s − 1.95·12-s + 2.50·13-s − 0.384·14-s − 0.636·15-s + 3.70·16-s + 0.222·18-s − 0.950·19-s + 1.24·20-s − 1.72·21-s + 1.09·22-s − 2.12·23-s − 0.877·24-s − 4.59·25-s + 0.556·26-s + 27-s + 3.37·28-s + 9.58·29-s + ⋯ |
L(s) = 1 | + 0.157·2-s + 0.577·3-s − 0.975·4-s − 0.284·5-s + 0.0907·6-s − 0.653·7-s − 0.310·8-s + 0.333·9-s − 0.0447·10-s + 1.49·11-s − 0.563·12-s + 0.695·13-s − 0.102·14-s − 0.164·15-s + 0.926·16-s + 0.0523·18-s − 0.218·19-s + 0.277·20-s − 0.377·21-s + 0.234·22-s − 0.442·23-s − 0.179·24-s − 0.918·25-s + 0.109·26-s + 0.192·27-s + 0.637·28-s + 1.78·29-s + ⋯ |
Λ(s)=(=(867s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(867s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.601849450 |
L(21) |
≈ |
1.601849450 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 17 | 1 |
good | 2 | 1−0.222T+2T2 |
| 5 | 1+0.636T+5T2 |
| 7 | 1+1.72T+7T2 |
| 11 | 1−4.95T+11T2 |
| 13 | 1−2.50T+13T2 |
| 19 | 1+0.950T+19T2 |
| 23 | 1+2.12T+23T2 |
| 29 | 1−9.58T+29T2 |
| 31 | 1−5.27T+31T2 |
| 37 | 1−8.48T+37T2 |
| 41 | 1−6.92T+41T2 |
| 43 | 1−7.15T+43T2 |
| 47 | 1−8.10T+47T2 |
| 53 | 1+6.44T+53T2 |
| 59 | 1+10.1T+59T2 |
| 61 | 1−2.96T+61T2 |
| 67 | 1−7.70T+67T2 |
| 71 | 1+0.384T+71T2 |
| 73 | 1−6.51T+73T2 |
| 79 | 1+2.37T+79T2 |
| 83 | 1+13.3T+83T2 |
| 89 | 1+1.98T+89T2 |
| 97 | 1−3.04T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.764464811886636511142975033575, −9.396628236284825040726095301219, −8.529264463988429356438407167125, −7.87761658656161682931531229925, −6.56691151042302356558644670277, −5.93932232992331387427846798535, −4.35454511804715088539774576545, −3.98666856142688385078573779875, −2.88260412275820003463458089772, −1.03989225069973365425781144792,
1.03989225069973365425781144792, 2.88260412275820003463458089772, 3.98666856142688385078573779875, 4.35454511804715088539774576545, 5.93932232992331387427846798535, 6.56691151042302356558644670277, 7.87761658656161682931531229925, 8.529264463988429356438407167125, 9.396628236284825040726095301219, 9.764464811886636511142975033575