Properties

Label 2-875-1.1-c1-0-28
Degree $2$
Conductor $875$
Sign $1$
Analytic cond. $6.98691$
Root an. cond. $2.64327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.13·2-s + 2.38·3-s − 0.707·4-s + 2.71·6-s + 7-s − 3.07·8-s + 2.68·9-s + 3.27·11-s − 1.68·12-s + 4.54·13-s + 1.13·14-s − 2.08·16-s + 7.14·17-s + 3.05·18-s − 8.23·19-s + 2.38·21-s + 3.72·22-s + 1.40·23-s − 7.33·24-s + 5.17·26-s − 0.748·27-s − 0.707·28-s + 4.44·29-s − 2.94·31-s + 3.78·32-s + 7.81·33-s + 8.12·34-s + ⋯
L(s)  = 1  + 0.803·2-s + 1.37·3-s − 0.353·4-s + 1.10·6-s + 0.377·7-s − 1.08·8-s + 0.895·9-s + 0.987·11-s − 0.486·12-s + 1.26·13-s + 0.303·14-s − 0.521·16-s + 1.73·17-s + 0.719·18-s − 1.88·19-s + 0.520·21-s + 0.794·22-s + 0.291·23-s − 1.49·24-s + 1.01·26-s − 0.144·27-s − 0.133·28-s + 0.824·29-s − 0.529·31-s + 0.669·32-s + 1.35·33-s + 1.39·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(875\)    =    \(5^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(6.98691\)
Root analytic conductor: \(2.64327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.414580944\)
\(L(\frac12)\) \(\approx\) \(3.414580944\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 - 1.13T + 2T^{2} \)
3 \( 1 - 2.38T + 3T^{2} \)
11 \( 1 - 3.27T + 11T^{2} \)
13 \( 1 - 4.54T + 13T^{2} \)
17 \( 1 - 7.14T + 17T^{2} \)
19 \( 1 + 8.23T + 19T^{2} \)
23 \( 1 - 1.40T + 23T^{2} \)
29 \( 1 - 4.44T + 29T^{2} \)
31 \( 1 + 2.94T + 31T^{2} \)
37 \( 1 + 5.61T + 37T^{2} \)
41 \( 1 - 6.82T + 41T^{2} \)
43 \( 1 + 2.00T + 43T^{2} \)
47 \( 1 + 9.26T + 47T^{2} \)
53 \( 1 - 0.742T + 53T^{2} \)
59 \( 1 + 14.2T + 59T^{2} \)
61 \( 1 - 4.06T + 61T^{2} \)
67 \( 1 + 1.20T + 67T^{2} \)
71 \( 1 + 11.7T + 71T^{2} \)
73 \( 1 + 0.957T + 73T^{2} \)
79 \( 1 + 0.494T + 79T^{2} \)
83 \( 1 + 6.57T + 83T^{2} \)
89 \( 1 - 9.53T + 89T^{2} \)
97 \( 1 + 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.959332686234166454439050590014, −9.009427603187131127184626067745, −8.596901933097885203016948067303, −7.88094965361732052849348814103, −6.55932952973186408338750693172, −5.72545041543630846605690996840, −4.45241778339775770356995069040, −3.73080592504685339112771051139, −3.02827595954610852028343193959, −1.54446078184689439442197215985, 1.54446078184689439442197215985, 3.02827595954610852028343193959, 3.73080592504685339112771051139, 4.45241778339775770356995069040, 5.72545041543630846605690996840, 6.55932952973186408338750693172, 7.88094965361732052849348814103, 8.596901933097885203016948067303, 9.009427603187131127184626067745, 9.959332686234166454439050590014

Graph of the $Z$-function along the critical line