Properties

Label 2-875-1.1-c1-0-46
Degree $2$
Conductor $875$
Sign $-1$
Analytic cond. $6.98691$
Root an. cond. $2.64327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.892·2-s + 0.942·3-s − 1.20·4-s + 0.841·6-s + 7-s − 2.85·8-s − 2.11·9-s − 6.14·11-s − 1.13·12-s − 5.43·13-s + 0.892·14-s − 0.146·16-s + 5.42·17-s − 1.88·18-s + 0.0416·19-s + 0.942·21-s − 5.48·22-s − 3.12·23-s − 2.69·24-s − 4.85·26-s − 4.81·27-s − 1.20·28-s − 5.24·29-s + 1.05·31-s + 5.58·32-s − 5.79·33-s + 4.84·34-s + ⋯
L(s)  = 1  + 0.631·2-s + 0.544·3-s − 0.601·4-s + 0.343·6-s + 0.377·7-s − 1.01·8-s − 0.704·9-s − 1.85·11-s − 0.327·12-s − 1.50·13-s + 0.238·14-s − 0.0366·16-s + 1.31·17-s − 0.444·18-s + 0.00954·19-s + 0.205·21-s − 1.16·22-s − 0.650·23-s − 0.550·24-s − 0.951·26-s − 0.927·27-s − 0.227·28-s − 0.974·29-s + 0.189·31-s + 0.987·32-s − 1.00·33-s + 0.830·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(875\)    =    \(5^{3} \cdot 7\)
Sign: $-1$
Analytic conductor: \(6.98691\)
Root analytic conductor: \(2.64327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 875,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 - 0.892T + 2T^{2} \)
3 \( 1 - 0.942T + 3T^{2} \)
11 \( 1 + 6.14T + 11T^{2} \)
13 \( 1 + 5.43T + 13T^{2} \)
17 \( 1 - 5.42T + 17T^{2} \)
19 \( 1 - 0.0416T + 19T^{2} \)
23 \( 1 + 3.12T + 23T^{2} \)
29 \( 1 + 5.24T + 29T^{2} \)
31 \( 1 - 1.05T + 31T^{2} \)
37 \( 1 + 6.65T + 37T^{2} \)
41 \( 1 - 10.0T + 41T^{2} \)
43 \( 1 - 9.39T + 43T^{2} \)
47 \( 1 - 0.370T + 47T^{2} \)
53 \( 1 + 9.12T + 53T^{2} \)
59 \( 1 - 8.09T + 59T^{2} \)
61 \( 1 - 1.20T + 61T^{2} \)
67 \( 1 + 13.1T + 67T^{2} \)
71 \( 1 - 6.42T + 71T^{2} \)
73 \( 1 + 13.3T + 73T^{2} \)
79 \( 1 + 9.76T + 79T^{2} \)
83 \( 1 + 4.44T + 83T^{2} \)
89 \( 1 - 5.41T + 89T^{2} \)
97 \( 1 + 6.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.724916790186189025748227413661, −8.867301312985004337055289317160, −7.86203320251066036387955552952, −7.56845254891064057354605268408, −5.69335817077744701462123410571, −5.38554690890054558808365444124, −4.37671692770957831747655032413, −3.14088486473103324013327877837, −2.42877055864525188948343749559, 0, 2.42877055864525188948343749559, 3.14088486473103324013327877837, 4.37671692770957831747655032413, 5.38554690890054558808365444124, 5.69335817077744701462123410571, 7.56845254891064057354605268408, 7.86203320251066036387955552952, 8.867301312985004337055289317160, 9.724916790186189025748227413661

Graph of the $Z$-function along the critical line