Properties

Label 2-87e2-1.1-c1-0-131
Degree $2$
Conductor $7569$
Sign $-1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.854·2-s − 1.26·4-s − 3.95·5-s − 4.38·7-s − 2.79·8-s − 3.38·10-s + 2.89·11-s − 2.95·13-s − 3.74·14-s + 0.149·16-s + 3.86·17-s + 2.14·19-s + 5.02·20-s + 2.47·22-s + 0.0986·23-s + 10.6·25-s − 2.52·26-s + 5.56·28-s + 0.0777·31-s + 5.71·32-s + 3.30·34-s + 17.3·35-s + 10.4·37-s + 1.83·38-s + 11.0·40-s − 6.48·41-s − 1.79·43-s + ⋯
L(s)  = 1  + 0.604·2-s − 0.634·4-s − 1.77·5-s − 1.65·7-s − 0.988·8-s − 1.07·10-s + 0.872·11-s − 0.818·13-s − 1.00·14-s + 0.0373·16-s + 0.936·17-s + 0.492·19-s + 1.12·20-s + 0.527·22-s + 0.0205·23-s + 2.13·25-s − 0.494·26-s + 1.05·28-s + 0.0139·31-s + 1.01·32-s + 0.565·34-s + 2.93·35-s + 1.71·37-s + 0.297·38-s + 1.74·40-s − 1.01·41-s − 0.273·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 0.854T + 2T^{2} \)
5 \( 1 + 3.95T + 5T^{2} \)
7 \( 1 + 4.38T + 7T^{2} \)
11 \( 1 - 2.89T + 11T^{2} \)
13 \( 1 + 2.95T + 13T^{2} \)
17 \( 1 - 3.86T + 17T^{2} \)
19 \( 1 - 2.14T + 19T^{2} \)
23 \( 1 - 0.0986T + 23T^{2} \)
31 \( 1 - 0.0777T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 + 6.48T + 41T^{2} \)
43 \( 1 + 1.79T + 43T^{2} \)
47 \( 1 + 9.87T + 47T^{2} \)
53 \( 1 + 7.41T + 53T^{2} \)
59 \( 1 + 2.09T + 59T^{2} \)
61 \( 1 + 3.55T + 61T^{2} \)
67 \( 1 - 4.65T + 67T^{2} \)
71 \( 1 - 10.2T + 71T^{2} \)
73 \( 1 - 6.78T + 73T^{2} \)
79 \( 1 - 6.58T + 79T^{2} \)
83 \( 1 - 15.3T + 83T^{2} \)
89 \( 1 - 12.9T + 89T^{2} \)
97 \( 1 + 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61847449250680546439367642330, −6.66021674543441020955644797650, −6.31274724351609267844491935090, −5.19497424914620288571915854072, −4.60727315292324814480393156481, −3.65857316954239732486641485917, −3.53828243152346200372266050557, −2.80402220373610882413411301038, −0.845043818549229769684692642391, 0, 0.845043818549229769684692642391, 2.80402220373610882413411301038, 3.53828243152346200372266050557, 3.65857316954239732486641485917, 4.60727315292324814480393156481, 5.19497424914620288571915854072, 6.31274724351609267844491935090, 6.66021674543441020955644797650, 7.61847449250680546439367642330

Graph of the $Z$-function along the critical line