Properties

Label 2-87e2-1.1-c1-0-321
Degree $2$
Conductor $7569$
Sign $-1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.67·2-s + 5.17·4-s + 0.923·5-s − 3.83·7-s + 8.49·8-s + 2.47·10-s − 5.25·11-s − 2.39·13-s − 10.2·14-s + 12.4·16-s − 1.49·17-s − 2.22·19-s + 4.77·20-s − 14.0·22-s − 0.388·23-s − 4.14·25-s − 6.40·26-s − 19.8·28-s − 2.74·31-s + 16.2·32-s − 4.00·34-s − 3.54·35-s + 10.6·37-s − 5.95·38-s + 7.85·40-s − 6.13·41-s + 0.0976·43-s + ⋯
L(s)  = 1  + 1.89·2-s + 2.58·4-s + 0.413·5-s − 1.44·7-s + 3.00·8-s + 0.782·10-s − 1.58·11-s − 0.663·13-s − 2.74·14-s + 3.10·16-s − 0.363·17-s − 0.510·19-s + 1.06·20-s − 3.00·22-s − 0.0810·23-s − 0.829·25-s − 1.25·26-s − 3.74·28-s − 0.493·31-s + 2.87·32-s − 0.687·34-s − 0.598·35-s + 1.75·37-s − 0.965·38-s + 1.24·40-s − 0.957·41-s + 0.0148·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 2.67T + 2T^{2} \)
5 \( 1 - 0.923T + 5T^{2} \)
7 \( 1 + 3.83T + 7T^{2} \)
11 \( 1 + 5.25T + 11T^{2} \)
13 \( 1 + 2.39T + 13T^{2} \)
17 \( 1 + 1.49T + 17T^{2} \)
19 \( 1 + 2.22T + 19T^{2} \)
23 \( 1 + 0.388T + 23T^{2} \)
31 \( 1 + 2.74T + 31T^{2} \)
37 \( 1 - 10.6T + 37T^{2} \)
41 \( 1 + 6.13T + 41T^{2} \)
43 \( 1 - 0.0976T + 43T^{2} \)
47 \( 1 + 2.69T + 47T^{2} \)
53 \( 1 - 11.1T + 53T^{2} \)
59 \( 1 + 3.44T + 59T^{2} \)
61 \( 1 + 8.67T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 - 2.66T + 71T^{2} \)
73 \( 1 + 11.3T + 73T^{2} \)
79 \( 1 + 3.13T + 79T^{2} \)
83 \( 1 + 17.3T + 83T^{2} \)
89 \( 1 + 6.57T + 89T^{2} \)
97 \( 1 - 9.57T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29142435934543714791704677430, −6.51801866640105981564983203554, −5.93942754056067418509554096546, −5.50194741954554523589214212914, −4.67176285523529536995713955789, −4.03551819844432021361592020906, −3.05169487859090120969482087711, −2.69636376442322949439874062874, −1.92219133129563875262464111687, 0, 1.92219133129563875262464111687, 2.69636376442322949439874062874, 3.05169487859090120969482087711, 4.03551819844432021361592020906, 4.67176285523529536995713955789, 5.50194741954554523589214212914, 5.93942754056067418509554096546, 6.51801866640105981564983203554, 7.29142435934543714791704677430

Graph of the $Z$-function along the critical line