Properties

Label 2-88-1.1-c5-0-8
Degree $2$
Conductor $88$
Sign $1$
Analytic cond. $14.1137$
Root an. cond. $3.75683$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 28.4·3-s + 97.1·5-s − 3.39·7-s + 566.·9-s − 121·11-s − 655.·13-s + 2.76e3·15-s − 1.67e3·17-s − 1.19e3·19-s − 96.5·21-s − 1.99e3·23-s + 6.31e3·25-s + 9.20e3·27-s − 291.·29-s − 715.·31-s − 3.44e3·33-s − 329.·35-s + 5.99e3·37-s − 1.86e4·39-s + 1.76e4·41-s + 2.23e4·43-s + 5.50e4·45-s − 2.65e4·47-s − 1.67e4·49-s − 4.75e4·51-s + 1.29e4·53-s − 1.17e4·55-s + ⋯
L(s)  = 1  + 1.82·3-s + 1.73·5-s − 0.0261·7-s + 2.33·9-s − 0.301·11-s − 1.07·13-s + 3.17·15-s − 1.40·17-s − 0.759·19-s − 0.0477·21-s − 0.785·23-s + 2.02·25-s + 2.43·27-s − 0.0642·29-s − 0.133·31-s − 0.550·33-s − 0.0454·35-s + 0.720·37-s − 1.96·39-s + 1.63·41-s + 1.84·43-s + 4.05·45-s − 1.75·47-s − 0.999·49-s − 2.56·51-s + 0.633·53-s − 0.524·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(88\)    =    \(2^{3} \cdot 11\)
Sign: $1$
Analytic conductor: \(14.1137\)
Root analytic conductor: \(3.75683\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 88,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.989694623\)
\(L(\frac12)\) \(\approx\) \(3.989694623\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + 121T \)
good3 \( 1 - 28.4T + 243T^{2} \)
5 \( 1 - 97.1T + 3.12e3T^{2} \)
7 \( 1 + 3.39T + 1.68e4T^{2} \)
13 \( 1 + 655.T + 3.71e5T^{2} \)
17 \( 1 + 1.67e3T + 1.41e6T^{2} \)
19 \( 1 + 1.19e3T + 2.47e6T^{2} \)
23 \( 1 + 1.99e3T + 6.43e6T^{2} \)
29 \( 1 + 291.T + 2.05e7T^{2} \)
31 \( 1 + 715.T + 2.86e7T^{2} \)
37 \( 1 - 5.99e3T + 6.93e7T^{2} \)
41 \( 1 - 1.76e4T + 1.15e8T^{2} \)
43 \( 1 - 2.23e4T + 1.47e8T^{2} \)
47 \( 1 + 2.65e4T + 2.29e8T^{2} \)
53 \( 1 - 1.29e4T + 4.18e8T^{2} \)
59 \( 1 + 3.08e4T + 7.14e8T^{2} \)
61 \( 1 + 2.75e3T + 8.44e8T^{2} \)
67 \( 1 + 9.42e3T + 1.35e9T^{2} \)
71 \( 1 + 5.38e4T + 1.80e9T^{2} \)
73 \( 1 - 1.57e4T + 2.07e9T^{2} \)
79 \( 1 + 1.36e4T + 3.07e9T^{2} \)
83 \( 1 - 6.81e4T + 3.93e9T^{2} \)
89 \( 1 - 8.09e4T + 5.58e9T^{2} \)
97 \( 1 - 1.61e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31885986283792997653345059887, −12.80212620243840956935283447629, −10.53285693550137748266447492902, −9.564149964841720487095871394431, −9.003624094073022383651763603349, −7.69265958865418670348219735596, −6.32927869559475797665140040646, −4.52864184252007483940372753774, −2.61890124436495795046838131686, −1.97604735869199125757878149704, 1.97604735869199125757878149704, 2.61890124436495795046838131686, 4.52864184252007483940372753774, 6.32927869559475797665140040646, 7.69265958865418670348219735596, 9.003624094073022383651763603349, 9.564149964841720487095871394431, 10.53285693550137748266447492902, 12.80212620243840956935283447629, 13.31885986283792997653345059887

Graph of the $Z$-function along the critical line