L(s) = 1 | + (1.71 + 5.26i)3-s + (5.02 + 3.65i)5-s + (−3.12 + 9.60i)7-s + (−2.98 + 2.17i)9-s + (−17.8 + 31.8i)11-s + (−16.0 + 11.6i)13-s + (−10.6 + 32.7i)15-s + (−0.0229 − 0.0166i)17-s + (22.3 + 68.8i)19-s − 55.9·21-s + 92.3·23-s + (−26.6 − 82.1i)25-s + (104. + 75.8i)27-s + (25.7 − 79.2i)29-s + (139. − 101. i)31-s + ⋯ |
L(s) = 1 | + (0.329 + 1.01i)3-s + (0.449 + 0.326i)5-s + (−0.168 + 0.518i)7-s + (−0.110 + 0.0804i)9-s + (−0.489 + 0.871i)11-s + (−0.342 + 0.248i)13-s + (−0.183 + 0.563i)15-s + (−0.000327 − 0.000237i)17-s + (0.270 + 0.831i)19-s − 0.581·21-s + 0.837·23-s + (−0.213 − 0.656i)25-s + (0.744 + 0.540i)27-s + (0.164 − 0.507i)29-s + (0.806 − 0.585i)31-s + ⋯ |
Λ(s)=(=(88s/2ΓC(s)L(s)(−0.0924−0.995i)Λ(4−s)
Λ(s)=(=(88s/2ΓC(s+3/2)L(s)(−0.0924−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
88
= 23⋅11
|
Sign: |
−0.0924−0.995i
|
Analytic conductor: |
5.19216 |
Root analytic conductor: |
2.27863 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ88(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 88, ( :3/2), −0.0924−0.995i)
|
Particular Values
L(2) |
≈ |
1.13840+1.24895i |
L(21) |
≈ |
1.13840+1.24895i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(17.8−31.8i)T |
good | 3 | 1+(−1.71−5.26i)T+(−21.8+15.8i)T2 |
| 5 | 1+(−5.02−3.65i)T+(38.6+118.i)T2 |
| 7 | 1+(3.12−9.60i)T+(−277.−201.i)T2 |
| 13 | 1+(16.0−11.6i)T+(678.−2.08e3i)T2 |
| 17 | 1+(0.0229+0.0166i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(−22.3−68.8i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−92.3T+1.21e4T2 |
| 29 | 1+(−25.7+79.2i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−139.+101.i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(−55.1+169.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(72.8+224.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1+69.3T+7.95e4T2 |
| 47 | 1+(133.+411.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(−485.+352.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(112.−347.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−554.−402.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−224.T+3.00e5T2 |
| 71 | 1+(−206.−149.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(272.−839.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(313.−227.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(982.+713.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+1.23e3T+7.04e5T2 |
| 97 | 1+(−721.+524.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.21285530035069622419042089344, −12.90766741748512983894250191087, −11.79118005145428862722249363959, −10.23203598063402823320284871510, −9.831853029299234126893791894975, −8.622217832936667002372562717030, −7.04911331594021165373326494413, −5.50119729924340288839096405579, −4.14217610226560311000014978732, −2.49434854920318690313435961363,
1.07287976651627275233622879383, 2.89244284341014989178280446935, 5.04355881376770893518048665774, 6.57742383281998157294935975027, 7.62846935234673218226195952226, 8.734000865637953971500064971707, 10.07611043391351073644625214451, 11.30141720585778367886427184685, 12.70584201183665267505144359039, 13.35824624598775136862036297993