Properties

Label 2-88-11.3-c3-0-6
Degree 22
Conductor 8888
Sign 0.320+0.947i0.320 + 0.947i
Analytic cond. 5.192165.19216
Root an. cond. 2.278632.27863
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.320 + 0.986i)3-s + (−7.72 − 5.61i)5-s + (5.56 − 17.1i)7-s + (20.9 − 15.2i)9-s + (10.0 − 35.0i)11-s + (−13.3 + 9.68i)13-s + (3.05 − 9.41i)15-s + (64.6 + 46.9i)17-s + (−44.2 − 136. i)19-s + 18.6·21-s − 45.6·23-s + (−10.4 − 32.2i)25-s + (44.4 + 32.2i)27-s + (−45.4 + 140. i)29-s + (12.6 − 9.17i)31-s + ⋯
L(s)  = 1  + (0.0616 + 0.189i)3-s + (−0.690 − 0.501i)5-s + (0.300 − 0.924i)7-s + (0.776 − 0.564i)9-s + (0.274 − 0.961i)11-s + (−0.284 + 0.206i)13-s + (0.0526 − 0.162i)15-s + (0.921 + 0.669i)17-s + (−0.534 − 1.64i)19-s + 0.194·21-s − 0.413·23-s + (−0.0837 − 0.257i)25-s + (0.316 + 0.229i)27-s + (−0.291 + 0.896i)29-s + (0.0731 − 0.0531i)31-s + ⋯

Functional equation

Λ(s)=(88s/2ΓC(s)L(s)=((0.320+0.947i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.320 + 0.947i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(88s/2ΓC(s+3/2)L(s)=((0.320+0.947i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.320 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 8888    =    23112^{3} \cdot 11
Sign: 0.320+0.947i0.320 + 0.947i
Analytic conductor: 5.192165.19216
Root analytic conductor: 2.278632.27863
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ88(25,)\chi_{88} (25, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 88, ( :3/2), 0.320+0.947i)(2,\ 88,\ (\ :3/2),\ 0.320 + 0.947i)

Particular Values

L(2)L(2) \approx 1.111460.797433i1.11146 - 0.797433i
L(12)L(\frac12) \approx 1.111460.797433i1.11146 - 0.797433i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
11 1+(10.0+35.0i)T 1 + (-10.0 + 35.0i)T
good3 1+(0.3200.986i)T+(21.8+15.8i)T2 1 + (-0.320 - 0.986i)T + (-21.8 + 15.8i)T^{2}
5 1+(7.72+5.61i)T+(38.6+118.i)T2 1 + (7.72 + 5.61i)T + (38.6 + 118. i)T^{2}
7 1+(5.56+17.1i)T+(277.201.i)T2 1 + (-5.56 + 17.1i)T + (-277. - 201. i)T^{2}
13 1+(13.39.68i)T+(678.2.08e3i)T2 1 + (13.3 - 9.68i)T + (678. - 2.08e3i)T^{2}
17 1+(64.646.9i)T+(1.51e3+4.67e3i)T2 1 + (-64.6 - 46.9i)T + (1.51e3 + 4.67e3i)T^{2}
19 1+(44.2+136.i)T+(5.54e3+4.03e3i)T2 1 + (44.2 + 136. i)T + (-5.54e3 + 4.03e3i)T^{2}
23 1+45.6T+1.21e4T2 1 + 45.6T + 1.21e4T^{2}
29 1+(45.4140.i)T+(1.97e41.43e4i)T2 1 + (45.4 - 140. i)T + (-1.97e4 - 1.43e4i)T^{2}
31 1+(12.6+9.17i)T+(9.20e32.83e4i)T2 1 + (-12.6 + 9.17i)T + (9.20e3 - 2.83e4i)T^{2}
37 1+(89.0273.i)T+(4.09e42.97e4i)T2 1 + (89.0 - 273. i)T + (-4.09e4 - 2.97e4i)T^{2}
41 1+(92.6285.i)T+(5.57e4+4.05e4i)T2 1 + (-92.6 - 285. i)T + (-5.57e4 + 4.05e4i)T^{2}
43 1125.T+7.95e4T2 1 - 125.T + 7.95e4T^{2}
47 1+(9.79+30.1i)T+(8.39e4+6.10e4i)T2 1 + (9.79 + 30.1i)T + (-8.39e4 + 6.10e4i)T^{2}
53 1+(421.+306.i)T+(4.60e41.41e5i)T2 1 + (-421. + 306. i)T + (4.60e4 - 1.41e5i)T^{2}
59 1+(70.9218.i)T+(1.66e51.20e5i)T2 1 + (70.9 - 218. i)T + (-1.66e5 - 1.20e5i)T^{2}
61 1+(600.+436.i)T+(7.01e4+2.15e5i)T2 1 + (600. + 436. i)T + (7.01e4 + 2.15e5i)T^{2}
67 1505.T+3.00e5T2 1 - 505.T + 3.00e5T^{2}
71 1+(689.500.i)T+(1.10e5+3.40e5i)T2 1 + (-689. - 500. i)T + (1.10e5 + 3.40e5i)T^{2}
73 1+(74.0+227.i)T+(3.14e52.28e5i)T2 1 + (-74.0 + 227. i)T + (-3.14e5 - 2.28e5i)T^{2}
79 1+(592.+430.i)T+(1.52e54.68e5i)T2 1 + (-592. + 430. i)T + (1.52e5 - 4.68e5i)T^{2}
83 1+(476.+346.i)T+(1.76e5+5.43e5i)T2 1 + (476. + 346. i)T + (1.76e5 + 5.43e5i)T^{2}
89 1663.T+7.04e5T2 1 - 663.T + 7.04e5T^{2}
97 1+(1.10e3+801.i)T+(2.82e58.68e5i)T2 1 + (-1.10e3 + 801. i)T + (2.82e5 - 8.68e5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.43566945201900483762710771181, −12.38854354767880553454020057521, −11.30582785588609036753635064385, −10.23565643109568536564366702518, −8.934530276723199209495809154380, −7.81708269147632165910779010020, −6.59216736086487050842810710852, −4.69862251548027173648108812646, −3.64969807218502900969894236056, −0.884404961763795539274292700933, 2.09724432465332709856840835441, 4.01378462793041007743419663751, 5.57917599008207211060214571201, 7.25881705224679824438559409423, 7.981100697439189103698221514180, 9.558233600976919367126902527861, 10.61894685065999531509403799743, 12.03409501621509028252765340579, 12.46006583828401738468480739157, 14.04971802855791245037696824608

Graph of the ZZ-function along the critical line