L(s) = 1 | + (2.02 − 6.21i)3-s + (−17.3 + 12.6i)5-s + (−9.35 − 28.7i)7-s + (−12.7 − 9.26i)9-s + (−27.5 + 23.9i)11-s + (−27.2 − 19.7i)13-s + (43.3 + 133. i)15-s + (−3.40 + 2.47i)17-s + (15.5 − 47.7i)19-s − 197.·21-s − 27.2·23-s + (103. − 318. i)25-s + (59.4 − 43.2i)27-s + (−7.51 − 23.1i)29-s + (−132. − 96.0i)31-s + ⋯ |
L(s) = 1 | + (0.388 − 1.19i)3-s + (−1.55 + 1.12i)5-s + (−0.504 − 1.55i)7-s + (−0.472 − 0.343i)9-s + (−0.755 + 0.655i)11-s + (−0.580 − 0.422i)13-s + (0.746 + 2.29i)15-s + (−0.0485 + 0.0352i)17-s + (0.187 − 0.576i)19-s − 2.05·21-s − 0.246·23-s + (0.828 − 2.54i)25-s + (0.423 − 0.307i)27-s + (−0.0481 − 0.148i)29-s + (−0.765 − 0.556i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.109i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.993 + 0.109i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0306072 - 0.555824i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0306072 - 0.555824i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (27.5 - 23.9i)T \) |
good | 3 | \( 1 + (-2.02 + 6.21i)T + (-21.8 - 15.8i)T^{2} \) |
| 5 | \( 1 + (17.3 - 12.6i)T + (38.6 - 118. i)T^{2} \) |
| 7 | \( 1 + (9.35 + 28.7i)T + (-277. + 201. i)T^{2} \) |
| 13 | \( 1 + (27.2 + 19.7i)T + (678. + 2.08e3i)T^{2} \) |
| 17 | \( 1 + (3.40 - 2.47i)T + (1.51e3 - 4.67e3i)T^{2} \) |
| 19 | \( 1 + (-15.5 + 47.7i)T + (-5.54e3 - 4.03e3i)T^{2} \) |
| 23 | \( 1 + 27.2T + 1.21e4T^{2} \) |
| 29 | \( 1 + (7.51 + 23.1i)T + (-1.97e4 + 1.43e4i)T^{2} \) |
| 31 | \( 1 + (132. + 96.0i)T + (9.20e3 + 2.83e4i)T^{2} \) |
| 37 | \( 1 + (-96.0 - 295. i)T + (-4.09e4 + 2.97e4i)T^{2} \) |
| 41 | \( 1 + (-124. + 381. i)T + (-5.57e4 - 4.05e4i)T^{2} \) |
| 43 | \( 1 - 216.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-31.5 + 96.9i)T + (-8.39e4 - 6.10e4i)T^{2} \) |
| 53 | \( 1 + (190. + 138. i)T + (4.60e4 + 1.41e5i)T^{2} \) |
| 59 | \( 1 + (39.0 + 120. i)T + (-1.66e5 + 1.20e5i)T^{2} \) |
| 61 | \( 1 + (206. - 150. i)T + (7.01e4 - 2.15e5i)T^{2} \) |
| 67 | \( 1 + 332.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (273. - 198. i)T + (1.10e5 - 3.40e5i)T^{2} \) |
| 73 | \( 1 + (-166. - 512. i)T + (-3.14e5 + 2.28e5i)T^{2} \) |
| 79 | \( 1 + (-38.7 - 28.1i)T + (1.52e5 + 4.68e5i)T^{2} \) |
| 83 | \( 1 + (-19.7 + 14.3i)T + (1.76e5 - 5.43e5i)T^{2} \) |
| 89 | \( 1 + 1.49e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-724. - 526. i)T + (2.82e5 + 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.14921860885921560503736898468, −12.24726082179660229180611590371, −11.00758719698865483595372744611, −10.13611919997651020238545049243, −7.939370221290429074520758203845, −7.38531887833777044535158336603, −6.83801611618513231828769464410, −4.18251840142318773081489374316, −2.81202363370593926608147125136, −0.30896169002472842178713129213,
3.15656343576287382206357898660, 4.42826013215091722393491553447, 5.52748367696184595338870571464, 7.81973054686149543531310118947, 8.836439510366847845561638250795, 9.423253912365042449869323270587, 11.02389629483686473429552488659, 12.13633650336726353284790799191, 12.76559837960113954309572929550, 14.63500254627137093636591707977