L(s) = 1 | + (2.02 − 6.21i)3-s + (−17.3 + 12.6i)5-s + (−9.35 − 28.7i)7-s + (−12.7 − 9.26i)9-s + (−27.5 + 23.9i)11-s + (−27.2 − 19.7i)13-s + (43.3 + 133. i)15-s + (−3.40 + 2.47i)17-s + (15.5 − 47.7i)19-s − 197.·21-s − 27.2·23-s + (103. − 318. i)25-s + (59.4 − 43.2i)27-s + (−7.51 − 23.1i)29-s + (−132. − 96.0i)31-s + ⋯ |
L(s) = 1 | + (0.388 − 1.19i)3-s + (−1.55 + 1.12i)5-s + (−0.504 − 1.55i)7-s + (−0.472 − 0.343i)9-s + (−0.755 + 0.655i)11-s + (−0.580 − 0.422i)13-s + (0.746 + 2.29i)15-s + (−0.0485 + 0.0352i)17-s + (0.187 − 0.576i)19-s − 2.05·21-s − 0.246·23-s + (0.828 − 2.54i)25-s + (0.423 − 0.307i)27-s + (−0.0481 − 0.148i)29-s + (−0.765 − 0.556i)31-s + ⋯ |
Λ(s)=(=(88s/2ΓC(s)L(s)(−0.993+0.109i)Λ(4−s)
Λ(s)=(=(88s/2ΓC(s+3/2)L(s)(−0.993+0.109i)Λ(1−s)
Degree: |
2 |
Conductor: |
88
= 23⋅11
|
Sign: |
−0.993+0.109i
|
Analytic conductor: |
5.19216 |
Root analytic conductor: |
2.27863 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ88(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 88, ( :3/2), −0.993+0.109i)
|
Particular Values
L(2) |
≈ |
0.0306072−0.555824i |
L(21) |
≈ |
0.0306072−0.555824i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(27.5−23.9i)T |
good | 3 | 1+(−2.02+6.21i)T+(−21.8−15.8i)T2 |
| 5 | 1+(17.3−12.6i)T+(38.6−118.i)T2 |
| 7 | 1+(9.35+28.7i)T+(−277.+201.i)T2 |
| 13 | 1+(27.2+19.7i)T+(678.+2.08e3i)T2 |
| 17 | 1+(3.40−2.47i)T+(1.51e3−4.67e3i)T2 |
| 19 | 1+(−15.5+47.7i)T+(−5.54e3−4.03e3i)T2 |
| 23 | 1+27.2T+1.21e4T2 |
| 29 | 1+(7.51+23.1i)T+(−1.97e4+1.43e4i)T2 |
| 31 | 1+(132.+96.0i)T+(9.20e3+2.83e4i)T2 |
| 37 | 1+(−96.0−295.i)T+(−4.09e4+2.97e4i)T2 |
| 41 | 1+(−124.+381.i)T+(−5.57e4−4.05e4i)T2 |
| 43 | 1−216.T+7.95e4T2 |
| 47 | 1+(−31.5+96.9i)T+(−8.39e4−6.10e4i)T2 |
| 53 | 1+(190.+138.i)T+(4.60e4+1.41e5i)T2 |
| 59 | 1+(39.0+120.i)T+(−1.66e5+1.20e5i)T2 |
| 61 | 1+(206.−150.i)T+(7.01e4−2.15e5i)T2 |
| 67 | 1+332.T+3.00e5T2 |
| 71 | 1+(273.−198.i)T+(1.10e5−3.40e5i)T2 |
| 73 | 1+(−166.−512.i)T+(−3.14e5+2.28e5i)T2 |
| 79 | 1+(−38.7−28.1i)T+(1.52e5+4.68e5i)T2 |
| 83 | 1+(−19.7+14.3i)T+(1.76e5−5.43e5i)T2 |
| 89 | 1+1.49e3T+7.04e5T2 |
| 97 | 1+(−724.−526.i)T+(2.82e5+8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.14921860885921560503736898468, −12.24726082179660229180611590371, −11.00758719698865483595372744611, −10.13611919997651020238545049243, −7.939370221290429074520758203845, −7.38531887833777044535158336603, −6.83801611618513231828769464410, −4.18251840142318773081489374316, −2.81202363370593926608147125136, −0.30896169002472842178713129213,
3.15656343576287382206357898660, 4.42826013215091722393491553447, 5.52748367696184595338870571464, 7.81973054686149543531310118947, 8.836439510366847845561638250795, 9.423253912365042449869323270587, 11.02389629483686473429552488659, 12.13633650336726353284790799191, 12.76559837960113954309572929550, 14.63500254627137093636591707977