L(s) = 1 | + (−6.31 − 4.58i)3-s + (−3.65 + 11.2i)5-s + (7.70 − 5.60i)7-s + (10.4 + 32.2i)9-s + (30.3 + 20.2i)11-s + (20.4 + 63.0i)13-s + (74.7 − 54.3i)15-s + (2.53 − 7.79i)17-s + (88.2 + 64.1i)19-s − 74.3·21-s − 196.·23-s + (−12.3 − 8.94i)25-s + (16.7 − 51.6i)27-s + (−129. + 94.2i)29-s + (−25.0 − 77.2i)31-s + ⋯ |
L(s) = 1 | + (−1.21 − 0.883i)3-s + (−0.327 + 1.00i)5-s + (0.416 − 0.302i)7-s + (0.388 + 1.19i)9-s + (0.831 + 0.555i)11-s + (0.437 + 1.34i)13-s + (1.28 − 0.935i)15-s + (0.0361 − 0.111i)17-s + (1.06 + 0.774i)19-s − 0.773·21-s − 1.77·23-s + (−0.0984 − 0.0715i)25-s + (0.119 − 0.368i)27-s + (−0.831 + 0.603i)29-s + (−0.145 − 0.447i)31-s + ⋯ |
Λ(s)=(=(88s/2ΓC(s)L(s)(0.593−0.804i)Λ(4−s)
Λ(s)=(=(88s/2ΓC(s+3/2)L(s)(0.593−0.804i)Λ(1−s)
Degree: |
2 |
Conductor: |
88
= 23⋅11
|
Sign: |
0.593−0.804i
|
Analytic conductor: |
5.19216 |
Root analytic conductor: |
2.27863 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ88(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 88, ( :3/2), 0.593−0.804i)
|
Particular Values
L(2) |
≈ |
0.785702+0.396936i |
L(21) |
≈ |
0.785702+0.396936i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−30.3−20.2i)T |
good | 3 | 1+(6.31+4.58i)T+(8.34+25.6i)T2 |
| 5 | 1+(3.65−11.2i)T+(−101.−73.4i)T2 |
| 7 | 1+(−7.70+5.60i)T+(105.−326.i)T2 |
| 13 | 1+(−20.4−63.0i)T+(−1.77e3+1.29e3i)T2 |
| 17 | 1+(−2.53+7.79i)T+(−3.97e3−2.88e3i)T2 |
| 19 | 1+(−88.2−64.1i)T+(2.11e3+6.52e3i)T2 |
| 23 | 1+196.T+1.21e4T2 |
| 29 | 1+(129.−94.2i)T+(7.53e3−2.31e4i)T2 |
| 31 | 1+(25.0+77.2i)T+(−2.41e4+1.75e4i)T2 |
| 37 | 1+(−94.2+68.4i)T+(1.56e4−4.81e4i)T2 |
| 41 | 1+(−289.−210.i)T+(2.12e4+6.55e4i)T2 |
| 43 | 1−106.T+7.95e4T2 |
| 47 | 1+(210.+153.i)T+(3.20e4+9.87e4i)T2 |
| 53 | 1+(−170.−525.i)T+(−1.20e5+8.75e4i)T2 |
| 59 | 1+(−362.+263.i)T+(6.34e4−1.95e5i)T2 |
| 61 | 1+(−165.+508.i)T+(−1.83e5−1.33e5i)T2 |
| 67 | 1+675.T+3.00e5T2 |
| 71 | 1+(234.−723.i)T+(−2.89e5−2.10e5i)T2 |
| 73 | 1+(−500.+363.i)T+(1.20e5−3.69e5i)T2 |
| 79 | 1+(−179.−551.i)T+(−3.98e5+2.89e5i)T2 |
| 83 | 1+(279.−860.i)T+(−4.62e5−3.36e5i)T2 |
| 89 | 1−537.T+7.04e5T2 |
| 97 | 1+(574.+1.76e3i)T+(−7.38e5+5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.93469464206975913917451624459, −12.43401640847337198395599394641, −11.58221545034552542307845208039, −11.07106830137574377775899099552, −9.626395458355299617913501092966, −7.66586249133520523669984043522, −6.86239574205685842785740037396, −5.90482945814154979325360232441, −4.07032565993840082637888949857, −1.58520732918764687842800214781,
0.67177888232135022234644451197, 3.92965712545785050405217067342, 5.17065304321924476415656176275, 5.97457182627543252887001647065, 8.005837841994473481454375527349, 9.181917234297547190619128728307, 10.37600826859315128691663360786, 11.49368410280977848252274019201, 12.05962272666478631006938372438, 13.33540589237471289997594638340